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GENERAL INTRODUCTION 

Statement of the Problem 

The existence of hexanuclear molybdenum clusters was first established by 

Brosset in 1945 [1]. They are known to exist in molybdenum(II) halides [2], as well 

as the ternary molybdenum chalcogenides known as Chevrel phases, M^MogYg (M = 

ternary metal cation; Y = chalcogenide) [3,4]. Many Chevrel phase compounds have 

been found to be superconductors [5], show catalytic activity [6], and finally, are ionic 

conductors [7], thus raising considerable interest in these compounds. 

Although the overall structures of these two classes of compounds are very 

different, the similarities between the clusters have led to the investigation of a 

series of mixed halide-chalcogenide clusters, [MogY^Xg_^] (X = halide; Y = 

chalcogenide). Members of the series with x = 1 in MogCl^gY (Y = S, Se, or Te) [8], 

x = 3 in MogBrgSg [9], x = 4 in MogBrgSg [10], and x = 6 in MogSgX2 (X = Br, I) 

[11,12], have been synthesized. The actual stoichiometries of the clusters are not 

necessarily reflected by the formulas becau-se of the sharing of ligands between 

clusters in the structures. All of these have structures related to the Chevrel phases. 

The structures of these cluster compounds will be discussed further, vide infra. 

Additional work has also been done in the investigation of a series of 

molecular clusters with mixed halogen and chalcogen ligands [13-16]. Michel and 

McCarley reported the first molecular MogXg cluster compound with mixed bridging 

ligands, (pyH)g[(MogCly8)Clg] [13]. Other molecular mixed halide-chalcogenide 

clusters have also been reported for x = 5,6, and 7 in the form MogS^Clg.^ npy (py = 
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pyridine; n = 3, 6, or 5 when x = 5, 6, or 7 respectively) [14]. Additional members of 

the series, MogCl^g_^^8^ 6L, where x varies from 4 to 8, have also been studied, but 

are less well characterized [15,16]. In these studies, the terminal ligand, L, was 

pyridine, ^-propylamine, a trialkylphosphine, or other coordinating ligand. The 

results suggested that the products of these attempted preparations were not single 

stoichiometric clusters, but rather, were mixtures of cluster products which had a 

range of values of x. 

The binary Chevrel compound, MogSg, is a metastable compound and its 

synthesis is achieved only by indirect methods. A ternary phase must first be 

prepared by typical high temperature methods and the ternary metal, usually Cu or 

Ni, subsequently removed by oxidation with acid [17]. The preparation of metastable 

compounds through low temperature routes via molecular precursors has received a 

good deal of attention in recent years [18,19]. A potential application of the 

preparation of molecular MogSg clusters would be to use these cluster compounds as 

soluble precursors to the Chevrel phase compounds. 

As part of the overall goal of preparing a molecular compound of the type 

MogSg'GL which could be used as a precursor to Chevrel phase materials, the specific 

purpose of much of the research discussed herein was to further investigate the 

synthesis and properties of the mixed sulfide chloride clusters, [MogS^^Cl^g.^^] 6L 

(4:gx^ 8). It was hoped that a better understanding of the properties of this series of 

compounds would provide a basis for further study of the reactivity of the end 

member of the series, MogSg*6L. Separation of the sulfur substituted clusters with 
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4 ^ X 8 from one another was pursued to aid in more complete characterization of 

these compounds. 

If there is to be.any application for molecular MogSg'GL cluster compounds as 

precursor materials, it is necessary to know about the reactivity of such species. To 

that extent, investigation of ligand substitutions and possible ligand removal of 

several MogSg'GL compounds was undertaken. 

Structures 

The structure of an MogXg cluster is shown in Figure 1. The cluster can be 

considered as an octahedron of molybdenum atoms with eight triply bridging ligands 

that cap each face to form a cube. These bridging ligands are noted by Schâfer as "i" 

for "inner" [20]. An additional set of six ligands occupies the coordination positions 

found at each vertex of the octahedron. In Schâfer's nomenclature system these are 

noted as "a" for "ausser". Thus, each octahedron of molybdenum atoms is coordinated 

by a total of fourteen ligands. 

The ligands can be shared between clusters in various ways to give a variety of 

structures. Using Schâfer's terminology, the connectivities are a-a, a-i, and i-i. For 

example, an a-a designation denotes a ligand in the terminal position of one cluster 

which is shared through a terminal position of another cluster. The possible 

connectivities are demonstrated in Figure 2. By utilizing different combinations of 

these connectivities, compounds can take on various stoichiometries which can lead 

to a wide variety of chemical and physical properties. 
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Figure 2. Possible ways that ligands can be shared between MogXgclusters 
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Molecular cluster compounds 

Discrete MogXg (X = halide) units were first found in the molybdenum(II) 

compound, MogCIg(OH)^' I4H2O by Brosset [1]. Other molybdenum halides having 

such cluster units were thoroughly investigated by Schâfer and voh Schnering [20]. 

As a specific example, in a-MoCl2, MogCl^"*" clusters are joined together by the 

sharing of terminal chlorides between the cluster units as indicated by the formula 

(MogCl^)Cl§Cl|y!§. Such connectivity results in separation of the octahedral clusters 

by 4.54Â. This is the nearest intercluster molybdenum-molybdenum distance and is 

far beyond the range of any bonding interaction. Consequently, the clusters can be 

considered as discrete, non-interacting units. The cluster units in the halides can be 

completely independent from one another when additional coordinating ligands are 

present to occupy the terminal positions, as in (MogXg)X^L2 [21]. 

Molecular chalcohalides As it has been used in the literature, the term 

"chalcohalide" will be used here to refer to a cluster compound with mixed halide-

chalcogenide bridging ligands of the sort MogXg_g.Y^. The chalcohalide clusters 

discussed here, for which crystal structures have been solved, contain discrete, non-

interacting clusters. The terminal ligands are either chlorides or coordinated organic 

ligands. 

The first report of a molecular chalcohalide was made by Michel and McCarley 

[13]. The MogSCl^"*" cluster was found as the product of the reaction between 

MogClj2 fmd two equivalents of NaSH. It was isolated in the structures 

(pyH)g[(Mog8Cly)Clg] and (pyH)g[(MogSCly)Clg] 3pyHCl (py = pyridine). The sulfur 

and chlorine positions were indistinguishable by x-ray diffraction structure solving 
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techniques. X-ray photoelectron spectroscopy confirmed that the sulfide occupies a 

bridging position of the cluster and not a terminal position. The cluster anions are 

isostructural with the (MogClg)C10" cluster found in Hg[(MogClg)Clg], for example 

[22]. 

The crystal structure of a compound whose composition was thought to be 

was also reported by Michel [14]. Again, structural data provided no 

evidence for an ordering of the sulfides and chlorides in the bridging positions of the 

cluster. Materials with the compositions MogSgClg Spy and MogSyCl'5py were also 

found and gave the same or very similar x-ray powder patterns as MogSgCl2'6py. 

The average Mo-Mo bond length in MogSgCIg 6py is 2.634Â,'approximately 0.02Â 

longer than the distances found in MogCl22> or the (Mog8Cl'y)C^ cluster. 

Recently, a molecular MogSg'GL cluster compound was achieved [23]. In this 

case, the six terminal positions were filled by triethylphosphine ligands. 

Consequently, these were discrete molecular clusters with no intercluster metal-

metal interactions. Simultaneously, Japanese researchers reported the synthesis of 

the same cluster using a different procedure [24]. The same average intracluster 

Mo-Mo bond distance of 2.66Â was found by both sets of workers. 

Lengthening of the metal-metal bond most likely results from oxidation of the 

cluster and removal of electrons from metal-metal bonding orbitals. The 

experimental results are in fairly good agreement with predicted bond lengths. 

Based on bond order considerations, the bond length change expected when going 

from Mo(II) (24 cluster electrons), to an average oxidation state of +2.33 (22 cluster 

electrons), is 0.023Â, and further oxidation to an average oxidation state of +2.67 (20 
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cluster electrons), should result in a lengthening of the bond by 0.048Â [25]. These 

values are consistent with the observed bond lengths in MogSgCl2'6py and 

MogSg'6PEt3. 

Chevrel phases and related solid state materials 

In the Chevrel phases, MMogYg (M = Pb, Sn, and many others; Y = 

chalcogenide) [26], the clusters are linked together resulting in strong metal-metal 

interactions between the cluster units. The connectivity in these compounds can be 

written as and is shown in Figure 3. This connectivity results in 

close approach of the cluster units. For example, in PbMogSg, 3.270Â is the shortest 

intercluster Mo-Mo distance. 

Chalcohalides The variety of structures available through utilization of 

variations of linkages between clusters is exemplified by the structures of these 

chalcohalides. Discrete molecular clusters as well as strongly interacting clusters are 

known. The molecular species have already been covered and tiiis section will focus 

on the solid state structures. These compounds will be discussed in order of 

increasing amount of ligand sharing. Recent reviews by Perrin and Sergent also 

provide excellent coverage of these compounds [27,28]. 

The structures of MogCl^QY (Y = S, Se, Te), are isomorphous with the Nbgljj 

structure and can be described by the formulation (MogClyY)C10/^ [8]. The 

chalcogen and halogen atoms are disordered in the bridging positions. The average 

intracluster Mo-Mo distance is 2.616Â and the nearest intercluster Mo-Mo distance is 

4.4Â. 
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Figure 3. Structure of the Chevrel phases showing four of the six neighboring 
clusterfi 
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MogXgYg (X = Br, Y = S; X = I, Y = S, Se), compounds show a great deal of 

ligand sharing to give one-dimensional chains [9]. The compounds have an MogXgYg 

cluster core and are formulated (MogBr^S*S^/^)Brg/|. All of the compounds in this 

group are isostructural, based on x-ray diffraction powder data. However, single 

crystals suitable for structure determination were obtained only for MogIg8e2. The 

intracluster and intercluster Mo-Mo distances in this compound were determined to 

be 2.71Â and 3.92Â, respectively. 

MogBrgSg offers an example of a MogY^X^ cluster [10]. Its structure is only 

slightly different from MogIg8e2. Additional ligands are shared through i-a 

linkages. The formulation is (MogS|/^S^/§Br^)Br|/§S|jr^. An intercluster Mo-Mo 

approach of only 3.53Âis found in this layered compound. 

Chalcohalides with the Chevrel phase structure are found in MogSgBr2 and 

The halogens in these structures replace the chalcogens on the 

unique 3-fold axis of the cluster in the Chevrel phases. The structure is described by 

the formulation (MogS|/|Br^)S§/|. The intercluster Mo-Mo distance in this 

compound is 3.225Âwhich is shorter than that of PbMogSg. 

It is interesting to note that when the chalcogenide in the cluster is sulfide, the 

halide is most often bromide or iodide. The only solid state chloride sulfide cluster is 

MogCljQS. French researchers have attributed this to the smaller size of these two 

atoms. "MogSgClg" would require too great a distortion of the cluster [26]. They also 

noted that the larger atoms seem to have a stabilizing effect on these clusters [11]. 

An overview of some of the structural features of these cluster compounds is given in 

Table I. 
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Table I. Survey of compounds containing MogXg clusters 

Formula Structural 
Formula 

[MogXg] 
Core 

Cluster 
Electrons^ 

d(Mo-Mo)^ 
(intra) 

d(Mo-Mo)^ 
(inter) 

M06CI22 (MogC$Cl§C%§ [MogClg] 24 2.613 4.54 

[(MogCl78)Clg]^- (MogCl)8")Cl§ [MogClijrS] 24 2.61 

MogCljQS (Mo6Cl7S)Clf/| [MogClyS] 24 2.60-2.63 4.4-4.8 

<MogI§SeiSe^p$§ [MoglgSeg] 24 2.71 3.92 

MogBrgSg (Mo6Sj/jsj/|Br4)Br^|S|^j [MogBr^S^] 24 2.63-2.68 3.53-3.54 

MogSgBr2 [MogBrgSg] 22 2.72-2.73 3.225 

PbMogSg (M06Sjj|Sj)S|;j 22 2.705 3.270 

MogSs [MogSs] 20 2.780 3.085 

MogSs'BPEtg [MogSg] 20 2.66 

^This is the total number of metal valence electrons per Mogunit. 
^Distances in Angstroms. 
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Electronic Structures 

Molybdenum(II) halides 

The electronic structure of the clusters in molybdenum(II) halides has been 

discussed extensively [29-31]. The Xa calculations of Cotton and Stanley [31] showed 

that the highest occupied metal-metal bonding orbital is of Eg character, which is in 

agreement with the earlier more simple calculations. The molybdenum cluster can 

be viewed as having twenty-four electrons (four from each metal atom), in twelve 

orbitals of primarily metal-metal bonding character. Thus, the metal-metal bonding 

within the cluster can be described as twelve single bonds, one along each of the 

edges of the octahedron. This is supported by an average Mo-Mo bond distance of 

2.613Â [20], which is what is expected from bond order-bond length considerations 

using bcc metallic molybdenum, (2.614Â) [32]. The calculations are in good 

agreement with spectroscopic data [21,33]. 

Chevrel phases 

The electronic structure of the Chevrel phases has also been extensively 

studied [34-38]. Only the general features of the calculated band structures will be 

discussed here. 

The first band structure calculation on Chevrel phase compounds was reported 

by Andersen et al. [34]. They used the linearized muffin-tin orbital (LMTO) approach 

and the atomic sphere approximation. They found the conduction band to be of 

primarily eg character and located just below the 24 electron gap. This is in fairly 
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good agreement with the simple molecular calculations on the cluster discussed 

above. 

The conduction band is fairly localized on the metal atoms to give a sharp peak 

in the density of states curve. The shape of this band explains the superconducting 

behavior of the compounds with less than 24 electrons. More recent calculations [35-

38] confirm the basic results found in the earlier reports. 

The similarities between the electronic structures of the MogXg clusters in 

molecular compounds and those with intercluster bonding can be seen in this brief 

discussion. Further discussions and comparisons have been presented in the 

literature [37,38]. 

Chemical and Physical Properties 

As mentioned briefly above, it is the properties of the Ghevrel phase materials 

which make them interesting. Because of potential applications of their properties, 

new, more efficient routes to their preparation in bulk are being investigated, as well 

as the preparation of useful devices such as thin films. It is therefore worthwhile to 

review the properties of the Chevrel phases as weU as the molecular compounds used 

in this research. 

Molecular compounds 

Because the molybdenum(II) halides have been known for a long time, a great 

deal is known about their reactivity and other chemical properties. The discussion 
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here will focus primarily on MogClj2 since it was used as a starting material for the 

substitution studies done in this work. 

The metal cluster itself is actually quite robust. The hexanuclear unit remains 

intact even in boiling aqua regia or fuming sulfuric acid [21]. It does however 

decompose in strongly basic solutions. The majority of the reactivity of these 

compounds occurs as ligand substitution. 

Formation of adducts The availability of six terminal coordination sites 

allows for neutral ligands to form adducts with the MogCl^g cluster of the type 

(MogClg)Cl^L2. Bis adducts are formed with a number of coordinating ligands such 

as pyridine, triethylamine, tri-n-propylphosphine, tri-n-butylphosphine, tri-n-

pentylphosphine [33,39]. Other phosphine derivatives may also be formed. 

Triphenylphosphine and diphenylethylphosphine will form adducts with the cluster, 

but with triethylphosphine or diethylphenylphosphine reduction was found to occur 

[40], The cluster was also reduced by tri-n-propylphosphine in these latter 

experiments, in contrast to the result claimed above. 

Substitution at L° sites The outer ligands, CI®, in [MogCl^]Cl| can be 

replaced by other halides or pseudohalides. When reacted with the hydrohalic acids 

at 200 to 250''C in vacuo, MogClgX^ results (X = Br, I) [33,41]. When X is fluorine, 

incomplete substitution occurs. Halide substitution occurs in the outer ligand 

positions when the cluster is reacted with mercuric halide salts as well [42]. 

Fluoride ions will also replace CI®. Reaction of MoqC1j2 with aqueous 

ammonium fluoride results in the replacement of the four outer chloride ligands by 

three fluoride and a hydroxide ligand. By reaction of these two reagents in 
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methanol, the ammonium salt of the fluoroanion is achieved, (NH^)2[MogClg]Fg. 

The cesium salt is prepared analogously [43]. 

The cluster can also be hydrolyzed to give hydroxide ligands in these terminal 

positions [33]. Methoxide can also occupy these positions [43,44]. Finally, it has also 

been shown that allqrl groups can be substituted into the outer coordination positions 

[39]. 

Substitution at sites The MogCl^"'' cluster is inert to aqueous halide 

[33] but will react with molten lithium salts at high temperature as described in 

equation (1) below [45]. 

MogClig + 12 LiX > MogXig + 12 LiCl (1) 

(X = Br, I) 

For clusters, MogX^*^, where X is a halide other than chloride, similar substitution 

occurs but only by a larger halide. Exchange of X^ for X® when X® is the larger also 

occurs thermally [46]. 

[MogXglY^^^ [Mo6X4Y4]X4 (2) 

(Y = Br, I when X = CI) 

In a similar manner, two hydroxide ligands can be inserted into the inner positions. 
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Replacement of by smaller halides occurs by reaction with mercury(II) 

halides but only after replacement of the terminal ligands [42]. These reactions are 

described by (3) and (4). 

MogXig + 3 HgYg > HgtMogXglYg + 2 HgXg (3) 

MoqXi2 + 7 HgYg > HgEMogYglYg + 6 HgXg (4) 

Sulfide ion may also be substituted into the bridging positions. This was first 

demonstrated by Michel and McCarley [13], The substitution is believed to proceed 

by way of an initial substitution of SH" into a terminal site which then loses a proton 

and substitutes for an inner chloride. Subsequent efforts have shown that further 

substitution of up to all 8 -bridging ligands by sulfide can occur [23]. A mixed 

selenide chloride cluster, [MogSoCliy]^"*", can be prepared in an analogous manner 

[47]. Additionally, methoxide is known to replace the inner ligands [44]. 

Redox chemistry MogCl^g demonstrates both reversible one electron 

reduction and oxidation waves. A second oxidation is not reversible [48]. Hamer and 

co-workers showed that the cluster can be chemically reduced with 

trialkylphosphines (triethyl-, diethylphenyl-, and tri-n-propylphosphine). The 

triethylphosphine derivative was characterized and formulated as 

([MogClg](PEtg)g)^^{[MogClg]CIg|^' [40]. The result for the tri-n-propylphosphine 

derivative is in disagreement with the results of Saito et al. [39]. 

Physical properties The physical properties of the [MogXg] cluster 

compounds are well established and confirm theoretical studies. This discussion will 
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be very brief and details can be found in the literature. Low temperature electronic 

spectra confirm that the HOMO and LUMO orbitals of MogClj2 are primarily metal 

centered [49]. Temperature dependent magnetic susceptibility measurements 

conclude that the ground state is a closed shell ^Ajg. Finally, the chloroanion 

MogCl^^ is luminescent both in solution and as a solid [49]. 

Chevrel phases and related solid state compounds 

The physical properties of the Chevrel phases are easily explained by their 

electronic and physical structures. Various aspects of the structures and properties 

of the Chevrel compounds have been reviewed [4,27,28,50] and only a brief summary 

will be given here. 

Conductivity The Chevrel phases and the related solid state 

chalcohalides exhibit electrical behavior now understood from theoretical 

considerations. Species with 24 electrons per Mog cluster unit are insulators or semi

conductors, depending on the extent of intercluster interaction. That is, compounds 

with long intercluster distances like MogCl^gS and MogBrgSg are insulators, while 

MogBrgSg is a semiconductor [51], due to narrowing of the band gap with increasing 

intercluster interaction. 

Superconducting transitions occur for species with less than 24 electrons, 

MMogSg (M = a variety of ternary metals, including many lanthanides), and 

^®6®8^2 = Br, I). Superconductivity is found to co-exist with magnetic ordering 

when M is a lanthanide (La, Gd, Lu, Ho, Dy), primarily due to the localization of 

conduction electrons on the cluster metal atoms [52,53]. High critical fields are also 
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observed but critical current densities are low. In thin film samples however, 

improvement is seen in the critical currents [54]. 

Reactivity The three-dimensional network of MogSg units in the 

Chevrel phases contains channels which allow for the insertion and de-insertion of 

ternary metal ions. It is the mobility of ions in these channels which allows for the 

preparation of the metastable binary phase. The ternary phases are oxidized by 

hydrochloric acid as shown in (5), with the removal of the ternary metal ion [17]. 

MjjMogSg + 2x H+ > MogSg fxHg + x m2+ (5) 

(M = Ni, Cu, Co, Fe) 

MogSs can be reduced reversibly by electrochemical methods as well [7]. This 

is shown in equation (6). 

xM+fxe' + MogSg # M+[Mog8g]^- (6) 

This intercalation method can also be used to prepare metastable ternary phases 

[55]. The reversibility of this process may have applications to lithium battery 

materials [56]. 

In this research, the stability of the metal cluster of MogCl]_2 was taken 

advantage of by substituting sulfide for chloride in the bridging positions of the 

already formed Mog cluster. The mixed sulfide chloride clusters thus obtained were 

separated and characterized to better understand the structures and properties of the 
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series Further, progress was made toward a better understanding of 

the reactivity of the molecular species, MogSg GPEtg, with respect to removal and 

exchange of the terminal ligands. 
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PART 1. PREPARATION AND CHARACTERIZATION OF COMPOUNDS 
CONTAINING HEXANUCLEAR MOLYBDENUM CLUSTERS WITH 
MIXED SULFIDE AND CHLORIDE LIGANDS, [MogCI^g.^^S^], WHERE 
4 < x < 8  
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INTRODUCTION 

The occurrence of hexanuclear octahedral clusters of molybdenum which have 

eight face bridging (^g), ligands have been known for many years [1]. The cluster is 

illustrated in Figure 4. The bridging ligands, X*, for compounds containing these 

clusters are usually halides [2] or chalcogenides [3,4], although the occurrence of 

alkoxides in these positions is also known [57]. 

The discovery in the early 19708 that many of the chalcogenides, M^MogSg, 

known as Chevrel phases, were superconductors spurred research in the area 

significantly. In addition, these materials are also hydrodesulfurization catalysts [6] 

and ionic conductors [7]. These properties are directly related to the structure of the 

compounds, which contains a three-dimensional network of clusters. 

The clusters found in the Chevrel phases are extremely similar to the well 

established molybdenum(II) halides. There are also many features of the electronic 

structures of the two classes of compounds that are analogous [37]. These 

similarities have brought about interest in the preparation of mixed halide 

chalcogenide clusters, [MogXg_^Yg] (X = halide; Y = chalcogenide). Many compounds 

containing such clusters have been found by Perrin and co-workers [8-12]. Solid-

state materials have been synthesized with x = 1 in MogCl^gY (Y = S, Se, or Te) [8], 

X = 3 in MogXgYg (X = Br, Y = S; X = I, Y = S, Se) [9], x = 4 in MogBrgSg [10], and x = 

6 in MogSgXg (X = Br, I) [11,12], all of which have structures related to the Chevrel 

phases. Recent reviews cover the structures of these materials in great detail 

[27,28]. 
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Molybdenum, Mo 

Terminal Ligand, L 

Bridging Ligand, X 

Figure 4. Structure of the MogXgLg cluster 
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Molecular molybdenum halide chalcogenide clusters are not as well known 

however. (pyH)g[(MogCly8)Clg] and (pyH)g[(MogCly8)Clg] 3py are the only well 

established examples [13]. However, with the recent discovery of MogSg GPEtg, the 

first example of an isolated cluster of molybdenum with sulfide ligands has been 

established [23,24]. 

Previous efforts to prepare molecular clusters with mixed ligands have shown 

that the products are usually mixtures of clusters which are substituted to various 

extents [15,16]. In an effort to prepare a complete series of molecular clusters, the 

work reported here investigated the synthesis and properties of the mixed sulfide 

chloride clusters, [Mog8^Cl^g_^^]Lg (x = 4). Normal phase column chromatography 

was used to separate the sulfur substituted clusters, 4 ̂  x ̂  8, found in the product 

mixture. 
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EXPERIMENTAL 

Materials 

Reagents 

MogCl^g, or a-MoCl2) was prepared by the high temperature 

conproportionation method described by Koknat et al. [58]. Sodium hydrosulfide was 

prepared by the method described by Brauer [59]. Hydrogen sulfide was bubbled 

through a solution of sodium ethoxide. The sodium hydrosulfide was recovered by 

precipitation after addition of ether to the solution. Sodium butoxide was prepared 

by dissolution of sodium metal in dry butanol. The solution was standardized by 

hydrolyzing an aliquot and diluting to volume with water. The hydroxide solution 

was then titrated against standard potassium hydrogen phthalate. The solution was 

stored under nitrogen and syringed as needed. All solid reagents were stored in a 

nitrogen atmosphere drybox (dewpoint -75°C). Triethylphosphine was used as 

obtained from Aldrich Chemical Co. and stored under dry nitrogen. 

Solvents 

Butanol was dried with sodium metal and subsequently distilled onto 

outgassed 4Â molecular sieves. Methanol was purified by treatment with either 

sodium metal or sodium methoxide followed by vacuum distillation onto outgassed 

3Â molecular sieves. 

Calcium hydride was used to dry pyridine. Following a period of reflux over 

CaH2, dry pyridine was obtained by fractional distillation under a steady flow of dry 
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nitrogen, or by vacuum distillation onto 4Â molecular sieves. Methylene chloride was 

dried by refluxing over phosphorus pentoxide. This was followed by distillation onto 

4Â molecular sieves. 

Toluene was refluxed over calcium hydride or phosphorus pentoxide and was 

distilled onto 4Â molecular sieves to dry. Solvents used for chromatography, 

cyclohexane, acetonitrile, toluene, and ethanol, were not dried prior to use. 

Analytical Procedures 

Because many of the materials were pyrophoric in air, samples were prepared 

for analyses by decomposition in basic aqueous solution under nitrogen. Specifically, 

sa'mples and vials were removed from the drybox, weighed, then returned to the 

drybox where the samples were transferred to beakers and covered with a thin 

plastic film which was secured with a rubber band. After removal from the drybox, 

an aqueous potassium hydroxide solution was syringed through the film to hydrolyze 

each sample and the vials were reweighed for tare. Solutions were exposed to air 

only after samples had been treated with the basic solution. At this point, hydrogen 

peroxide was added to complete decomposition and oxidation of molybdenum to 

MoO|-. 

Molybdenum was determined by precipitation of Mo02(ONCgHg)2 [60]. With 

this method, the basic solutions were neutralized to a pH = 4 to 6, then buffered with 

acetic acid/ammonium acetate buffer. The analyte was precipitated by the addition 

of 8-hydroxyquinoline solution. The solid was filtered through tared filters, washed 

with hot distilled water, and heated at 140°C overnight to dry. 
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Chlorine was determined by potentiometric titration of neutralized solutions 

with standard AgNOg solution using a A^AgCl electrode with a silver electrode as 

the reference. The endpoint was determined by the second derivative method. 

Additional microanalyses for molybdenum, chlorine, sulfur, carbon, and hydrogen 

were obtained from Galbraith Laboratories [61]. 

Physical Measurements 

Infrared spectroscopy 

Infrared spectra were obtained from an IR/90 Fourier Transform Infrared 

Spectrometer made by IBM Instruments, Inc. Samples were prepared as Nigol or 

paraffin oil mulls. The mulls were pressed between cesium iodide plates to collect 

data. Reference spectra were obtained using blank cesium iodide plates or air. The 

sample chamber was constantly purged with nitrogen. Mid-infrared (4000-400 cm"^), 

and far-infrared (600-200 cm"^), spectra were recorded separately. 

Nuclear magnetic resonance spectroscopy 

Proton decoupled nmr spectra were collected at 121.05 MHz on WM-200 or 

WM-300 instruments by Bruker. The instruments were equipped with deuterium 

lock. Chemical shifts were referenced to 85% phosphoric acid contained in a capillary 

within the sample tubes. 

Samples were put into 10 mm tubes in the drybox. Deuterated solvents, 

<fg-benzene or dg-methylene chloride, were syringed from freshly opened bottles into 
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the tubes through septa. In the sample preparation, exposure to air was minimized 

but not strictly avoided. 

Electron paramagnetic resonance spectra 

A Bruker ER200-SRC instrument with an ESR900 cryostat (Oxford 

Instruments), was used to obtain epr spectra of the compounds discussed here. The 

nominal frequency was 9.45 GHz and the modulation frequency was 100 kHz. 

spectra were obtained for all samples at 113K and for some at room temperature. 

Samples were prepared as methylene chloride solutions in sealed quartz tubes. 

Electronic spectra 

Electronic spectra were obtained in the region of 200 to 700 nm on a Varian 

DM8 1008 double beam spectrophotometer. Samples were placed in a special sample 

container in the drybox and solvent was vacuum distilled into the vessel. The 

solution was filtered into the cuvette of the sample holder and solvent was vacuum 

distilled from the reservoir to the 10 mm quartz cuvette until an appropriate 

concentration was achieved. Pure solvent was used as the reference and scan rates of 

50 or 100 nm/min were used. At 350 nm and below, a deuterium light source was 

used. 

X-ray powder diffraction 

An Enraf Nonius Delft FR552 Guinier camera was used to obtain x-ray powder 

patterns. A General Electric XRD-5 generator with a Philips normal focus tube and 
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a Cu target was used to generate the x-rays. Air sensitive samples were ground 

thoroughly then mounted between strips of cellophane tape in a nitrogen drybox to 

protect them from air. Powdered NBS silicon was used as an internal standard. 

Synthetic Methods 

Sulfidation of MogCl^g 

The molecular chalcohalide and sulfide clusters were synthesized by 

substituting sulfur for chlorine in the already formed MogCl^^ cluster found in 

MogCl Sodium hydrosulfide was used as the sulfide source, as in previous 

substitutions [13]. Sodium butoxide acted in these reactions as a proton acceptor. 

Typically, MogCl22 and NaSH were weighed in the drybox and put into a 

reaction vessel equipped with a reflux condenser. n-Butanol was then vacuum 

distilled into the flask and an appropriate volume of standardized sodium butoxide 

solution was syringed into the mixture. Excess pyridine was also syringed into the 

mixture to act as a coordinating ligand to prevent intercluster linkages from being 

formed during the reaction. The mixtures were stirred under reflux for periods of 

two to five days. 

The resulting pyridine derivatives of the cluster products were extracted with 

methanol to remove the sodium chloride also formed in these reactions. Analysis; 

Calc. for MogCl^ gSg g 4py: Mo, 48.9%; CI, 14.4%; S, 9.8%; C, 20.4%; H, 1.7%; N, 

4.8%. Found: Mo, 48.6%; CI, 14.4%; CliMog = 4.8. The purified clusters were then 

further reacted with triethylphosphine in refiuxing toluene. This gave the soluble 
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triethylphosphine derivatives of the clusters. Analysis: Calc. for Mog8^C1^ 6PBtg : 

CI, 9.12%. Calc. for MogSgClg-ePEtg: CI, 6.86%. Found: CI, 7.68%. 

Unfortunately, the sulfidation reaction described above was non-stoichiometric 

and resulted in a mixture of cluster products. For this reason, chromatography was 

employed to separate and isolate the cluster products substituted to different extents. 

Chromatography 

Chromatographic separations were performed on columns of Celex-N-1 (non-

ionic cellulose, Bio-Rad Laboratories), and basic alumina (Bio-Rad Laboratories), 

which had a water content of 4.623% by weight (determined by weight loss after 

heating at 180°C for approximately 40 hours). Columns were approximately 30 mm 

in diameter by 300 mm in length. The solvent reservoir and collection flasks were 

purged with flowing dry nitrogen during the separations. Eluents were used as 

obtained from freshly opened bottles. Toluene, cyclohexane, and acetonitrile were 

obtained from Fischer Scientific. 

The product obtained from the reaction with triethylphosphine above was 

dissolved in cyclohexane and filtered. The solution was transferred by cannula under 

nitrogen pressure to the Celex-N-1 column. The majority of the material eluted with 

cyclohexane. This solution was transferred by syringe under nitrogen purge to the 

basic alumina column. Subsequent elution with increasingly polar (toluene then 

acetonitrile), and finally hydroxylic (ethanol), solvents achieved good separation of 

the mfgor products. 
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Fractions were collected from the point where the dark color of the band began 

to come off the column until the band was no longer visible on the column. Solids 

were obtained from each collected fraction by drying in vacuo. It is worth noting that 

when the solid mixture was dissolved in toluene and the same procedure was used, a 

second band was not isolated from the Celex-N-1 column. Further, MogSg 6PEtg 

and the next materials to elute from the basic alumina column were not resolved. 

However, elution with acetonitrile and ethanol behaved identically in either case. 

Figure 5 is a schematic description of the procedure. 

Isolation of MogSg'SPEtg 

This material was separated from the other components by elution from basic 

alumina with mixed cyclohexane/toluene. This pinkish material was the first to 

completely elute from the column. Other minor bands moved down the column as 

well but were not resolved. One of these was green in color which suggested that is 

was not a hexanuclear molybdenum species. MogSg 6PEtg was also easily purified 

by passing solutions containing it through silica gel columns and eluting with 

toluene. No other bands eluted from the silica gel column. The compound was 

identified by its far-infrared spectrum. 

Isolation of MogS, gCl g GPEtg 

The next band to move down the basic alumina column was eluted with mixed 

toluene/acetonitrile or acetonitrile (25 to 75 vol%). In either case, only a single band 

eluted. This material was collected as described above and dried in vacuo. 
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Elemental analyses were obtained from Galbraith Laboratories. Analysis: 

Calculated for the mixture, MogSg gCIg y 6PEtg + 2.5 S=PEtg: Mo, 29.89%; CI, 

4.97%; S, 12.98%; C, 31.80%; H, 6.69%; P, 13.67%. Found: Mo, 28.94%; CI, 4.78%; S, 

12.89%; C, 30.87%; H, 6.45%. Mid- and far-infrared spectra and a ^^P nmr spectrum 

were obtained for this fraction. 

Isolation of MogS jCl j 60PEtg 

A major band was removed from the basic alumina column by elution with 

absolute ethanol. Again, it appeared to be a single component band. This material 

was collected as described above and dried in vacuo. Elemental analyses were 

obtained from Galbraith Laboratories. Analysis: Calc. for MogS^Cl^ 6PEtg : Mo, 

37.02%; CI, 9.12%; S, 8.25%; C, 27.81%; H, 5.85%. Calc. for Mog84Cl4 60PEt3: Mo, 

34.87%; CI, 8.59%; S, 7.77%; C, 26.20%; H, 5.50%; O, 5.82%; P, 11.26%. Found for 

one sample: Mo, 33.95%; CI, 8.31%; S, 8.47%; C, 24.80%; H, 5.30%; CLMog, 3.97; 

8:Mog, 4.47; C:Mo, 5.84. Found for a different sainple: Mo, 27.56%; CI, 9.58%; S, 

6.77%; C, 24.00%; H, 5.08%; Cl:Mog, 4.14; S:Mog, 4.47; C:Mo, 5.10. Mid- and far-

infrared spectra and a ^^P nmr spectrum were obtained for the compound. 

Approximately 0.5 grams of this material were put into a Schlenk flask. Ca. 

10 mL of dry methylene chloride were syringed into the flask under nitrogen flow. 

The solution was then placed in the refrigerator. After about 2 weeks, crystal growth 

was observed. However, the size of the crystals was only about 0.05 mm x 0.05 mm x 

0.05 mm and crystallinity was lost upon removal of the solvent. No further work was 

done with this material. 
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In an effort to prepare the triethylphosphine derivative from the 

triethylphosphine oxide derivative obtained from the chromatographic separation, a 

small sample, co. 50 mg, of the ethanol eluted product was mixed with 2 mL PEtg 

and 20 mL of dry toluene. The mixture was stirred and brought to reflux for 24 

hours. Initially, solubility was only slight but upon filtering the products, no solid 

was recovered. The solvent was evaporated to near dryness then layered with ethyl 

ether which caused a precipitate to form. This solid was washed twice with 5 to 10 

mL dry ethyl ether. The materials were then dried leaving a brown microcrystalline 

product in the ether insoluble fraction and colorless needles in the ether soluble 

fraction. Infrared spectra were obtained for both products and an x-ray powder 

pattern was also obtained for the cluster product. 

Isolation of the second fraction from the Celex-N-1 column 

The final isolated band was eluted from the Celex-N-1 column with 

acetonitrile. The solution collected under nitrogen purge was dried in vacuo. 

Elemental analyses were obtained from Galbraith Laboratories. Analysis: Calc. for 

M06CI4 gS3(0H)i 4(PEt3)4 5: Mo, 41.4%; CI, 11.7%; S, 6.9%; C, 23.3%; H, 5.0%; O, 

1.6%; P, 10.0%. Found: Mo, 38.64%; CI, 10.99%; S, 6.76%; C, 21.54%; H, 4.55%; 

Cl;Mo0, 4.6; 8:Mog, 3.1; C:Mo, 4.5. Mid- and far-infrared spectra and ^^P nmr 

spectra were obtained for the compound. Isolation of this fraction was not 

reproducible. 
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[Mo6Cl(g.^)SJ-6PEt3 

Cyclohexane 
Celex-N-1 Column 

insoluble Cyclohexane 

CHgCN 

"[Mo6S„3Cl„4(OH)](OH)(PEt3)4 5" 

Basic Alumina Column 

Toluene or Tol/Cy^ 

Toluene 

MoeSg"" 

decomposition 
products 

T0I/CH3CN or CHgCN 
^ MogS^gCl^g 

Ethanol 
MogS4Cl4 

M?ol = toluene, Cy = cyclohexane. 
^Products eluted from the basic alumina column are presumed to be the (hexalds)triethylphosphine derivatives. 

The formulas are incomplete for the sake of simplicity. 

Figure 5. Scheme showing the chromatographic separation of MogCl^g_^^8^ 6PEtg 
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RESULTS AND DISCUSSION 

Syntheses 

It has been shown, from the results of this work and that of other workers [IS

IS], that sodium hydrosulfide is effective in sulfiding the [MogClg] cluster. However, 

as with previous approaches, the suUidation was found to be non-stoichiometric, even 

when base was added to the reaction mixture. A distribution of sulfided cluster 

compounds, MogCl^g.j^^S^, was achieved. 

In the initial sulfidation step, described by equation (7), a pyridine derivative, 

MogCl^g_^^8^ npy, was obtained where x =3.6 and n = 4. 

M06CI12 + 4 NaSH + 4 NaOBu 

MogCl(g.3j)S^npy + 8 NaCl + 4 BuOH (7) 

At this point the product was pyrophoric. The incomplete ligation of the cluster 

(n < 6), accounts for this high reactivity. The extent of the sulfide substitution was 

somewhat lower than the reaction stoichiometry. The molybdenum and chlorine 

analyses suggested an average of 3.6 sulfides per cluster, not 4. Because sodium 

chloride was a co-product of the reaction, incomplete extraction with methanol to 

remove this product may account for the higher than expected chlorine analysis. It 

should be noted however, that when the reaction stoichiometry is increased to 8 

equivalents of sodium hydrosulfide per cluster, the resulting product still contains 

approximately one chloride per cluster [15]. 
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After purification and Airther reaction with triethylphosphine as in equation 

(8), the soluble product had a chlorine content which fit MogCl^g_gr)8g GPEtg, where 

X « 4.6. 

Mo6Cl(8.x)Sx^ipy + 6 PEtg Mo6Cl(g.^)S^ 6PEt3 + n py (8) 

Because x was determined in this case solely by chlorine analysis, the value of x here 

was subject to high imprecision. The higher value of x though might indicate that 

the product of equation (8) that was insoluble in toluene and was filtered away, 

contained products with less than four sulfur atoms per cluster. Such compounds 

would best be formulated as [MogCl^g_^^8^]Cl(^.gy(2+x)L. They should be somewhat 

polar due to the terminal chloride ligands and it would not be too surprising that 

their solubility properties would be different from the non-polar MogCl^g_^^8^'6L 

compounds. This might explain the change in average Cl:Mog ratio when going from 

the pyridine derivative to the triethylphosphine derivative. Another explanation 

would be that the cluster product of equation (7) was not completely free of the NaCl 

co-product as discussed above. Unfortunately, there is no evidence to support either 

alternative. No analytical data are available for the toluene insoluble material, 

which was a minor fraction of the total product. More complete analyses of these 

materials would also have provided the necessary information to answer this 

question. 



www.manaraa.com

36 

Separations 

Previous approaches to separate cluster products from one another on the 

basis of solubility differences proved to be insufficient. It is not surprising that the 

clusters with mixed chloride sulfide ligands have very similar solubility properties. 

Thus, chromatography was employed as the most feasible separations method. 

Because these compounds were expected to be nearly identical in structure and 

molecular weight, normal partition chromatography was the selected method. 

Many column materials were found which would partially separate the cluster 

solutions. For this reason, a sequence of columns was employed. The most complete 

separation was obtained by using Celex-N-1 as a sort of "pre-column" before fiirther 

separation on basic alumina. The cluster products isolated by this procedure fit the 

formulas MogSg 6PEtg, MogS_gCl_,g 6PEtg, and MogS^Cl^-SOPEtg. 

Mo6S4Cl4*60PEt3 and MogS_gCl_g 6PEtg were major fractions with 

MogS^CI^ 60PEtg being the most abundant. One problem with this separation 

system was a low capacity found for the basic alumina. Column overloading occurred 

for large samples. This may be a complication which arose from the presence of a 

substantial amount of water on the column surface. However, when separations 

were attempted using dried basic alumina, very little material could be eluted 

whatsoever. The water was in fact necessary to have the proper column activity. 

The MogSg GPEtg cluster was the first to elute from basic alumina. In fact, it 

was not adsorbed at all. Fractions which were subsequently eluted from basic 

alumina contained increasingly more chlorine. Interaction between aluminum and 
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chlorine seems to be the retention mechanism. This is not unreasonable when the 

strength of aluminum-chlorine bonds is considered. 

Although the yields were low for all fractions, some observations were made 

regarding the distribution of products. The MogS^Cl^ cluster product was always 

the most abundant product. MogSg and the fraction containing Mog8_.gCl_,g were 

also significant fractions, though the relative amounts of these seemed to vaiy from 

batch to batch. Those materials that eluted near MogSg GPBtg were always very 

minor amounts and enough for characterization was never isolated. However, the 

green species may be some derivative of MogS^"^ which has been observed and 

identified in other preparations [47]. 

The most surprising result of this synthetic procedure was that the MogSg 

cluster was produced, even when the ratio of sulfide to cluster during the 

substitution reaction was lower than eight. The formation of the MogSg cluster fi^om 

the reaction stoichiometry used here (4 sulfides per cluster), suggests that the fully 

sulfided compound is thermodynamically quite stable. The facile formation of 

MoeSg'ôPEtg by the. reduction of Mog8^Cl^(PEtg)^(MeOH) at room temperature 

adds proof to its thermodynamic stability [24]. The formation of the completely 

sulfided MogSg GPEtg cluster by the methods used in this research seems to be 

dependent on the presence of base in the reaction mixture. When the cluster was 

reacted with seven equivalents of sodium hydrosulfide in the absence of base, no 

MoeSg'ôPEtg was found in the product mixture [62]. The base probably 

deprotonates the hydrosulfide and prevents side reactions where insoluble HgS 

would be formed and the sulfide source is subsequently depleted [15]. An analogous 
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occurrence is observed in the tungsten system. When WgClj2 reacted with NaSH 

and NaOBu, WgSg is the resulting sulfided cluster product, with little dependence on 

reaction stoichiomet^y [63]. 

Infrared Spectra 

Infrared spectroscopy was a very valuable tool in the characterization of the 

materials prepared in this research. Mid-infrared and far-infrared spectra were 

obtained separately as previously discussed. The information obtained from these 

two sets of data was generally used for two different purposes. Organic constituents 

of the products were identified on the basis of the information found primarily in the 

mid-IR region while the far-IR spectra were used as an aid for determining if the 

cluster had remained intact throughout reaction. Tables II through IV contain the 

infrared absorption peaks found for all the products discussed in this section. 

Mid-infrared spectra 

Peaks found in the spectrum of the pyridine derivative were as expected. 

Confirmation for the presence of pyridine was given by the presence of fairly strong 

bands in the mid-infrared region near 1601 and 1443 cm~^ [64]. When compared to 

the spectra of previously characterized pyridine derivatives [15,16], one finds the 

same characteristic peaks near 1599, 1443,1217,1151, 1067, 1040, 1009, 754, and 

692 cm"^. Nothing out of the ordinary was observed. 

The spectra of the triethylphosphine derivatives must be examined more 

closely. The fractions isolated from the chromatography gave spectra slightly 
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Table H. Absorption frequencies (cm'^), found in the mid-infrared spectra of sulfided cluster products 

A» CC D® E® 

1599{m)g 
1443(s) 
1416(m) 1416(m) 

1252(m) 

1416(mw) 
1261(m) 

1416(w) 
1261(mw) 
1250(w) 

1416(w) 

1254(mw,b) 

1412(w) 
1261(m) 

1217(m) 
1151(w) 

1097(mTv,b) 1096(w,b) 

1170(sh) 
1105-1115(mw,b) 

1099(mw,b) 
1067(mw) 
1040(m) 1036(s) 1032(ms) 1036(m) 1036(ms) 1034(m) 
1009(w) lOOKw) 

990(vw) 
802(m,b) 

995(w) 
802(w) 802(w) 

754(m) 764(s) 
731(w) 

760(m) 764(ms,dbl) 
730(vw,sh) 

II 
766{mw) 

692(m) 690(w) 692(vw) 
667(w) 673(mw) 

^The cluster product of equation (7), MogCl^g_^)8^Tipy. 
^The soluble cluster product of equation (8), MogCl^g_^^8g 6PEtg. 
*^The first fraction collected from basic alumina, MogSg 6PEtg. 
^PEtg derivative eluted from basic alumina column with CHgCN. 
®PEtg derivative eluted from basic alumina column with EtOH. 
%Etg derivative eluted from Celex-N-1 with acetonitrile. 
^Relative intensities are given in parentheses: s=strong, m=medium, w=weak, sh=shoulder, b=broad, v=very, 

dbl=doublet. 
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different from the parent mixture. Samples obtained under the same conditions 

however gave the same spectra, supporting the reproducibility of the 

chromatographic procedure. 

All spectra of the triethylphosphine-ligated materials contained the 

characteristic peaks of coordinated triethylphosphine: 1254,1036, 764-770, and 730-

731 cm'^ [65]. The relative intensities of these peaks were in agreement with those 

cited in the literature, while some of the peaks described in the literature as having 

weak intensities (1005, 980 and a group at 710, 680, and 641 cm'^), were absent from 

these spectra or showed up only as weak shoulders. Also absent were the strong 

peaks characteristic of coordinated pyridine at 1443 and 631 cm"^. This 

demonstrated that the ligand replacement was complete. 

The spectra of those samples eluted with acetonitrile from basic alumina 

contained additional peaks at 1096, 673 and 536 cm'^. The first was weak in 

intensity while the latter two were medium and strong respectively and are 

accounted for by the presence of triethylphosphine sulfide [66]. Strong bands at 670 

and 535 cm"^ were reported in the literature for this compound. The band at 

535 cm'^ is assigned to the P=S stretch [67,68]. Other strong peaks which 

correspond to vibrations of the ethyl groups were also reported. These occur at very 

nearly the same frequencies as the coordinated triethylphosphine. 

In the ethanol eluted products, new IR peaks appeared at 1105 to 1115, 1069, 

and 448 cm~^ which were not seen in the spectrum of the mixture prior to 

chromatography. The parent mixture had never been exposed to air or moisture 

prior to the separations. However, the separations were done using dry nitrogen 
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purge whenever possible, but without pre-drying the eluents. It is therefore 

reasonable to presume these new peaks were from oxidation, hydrolysis, or 

ethanolysis products. It is not certain at this time however, exactly what these by

products were. One possibility is triethylphosphine oxide. The P=0 stretching 

frequency of triethylphosphine oxide is reported to be at 1166 cm"^ [68]. The bands 

associated with the P=0 stretch of triphenylphosphine oxide and trimethylphosphine 

oxide were found to shift to lower frequencies by approximately 40 to 70 cm'^ when 

coordinated [69]. The peak observed in the MogS^Cl^ cluster compound at 1105 to 

1115 may correspond to this vibration. 

This is further supported by the absence of such a band in the spectrum of the 

product from the reaction of "MogS^Cl^ 60PBtg" with triethylphosphine shown in 

the reaction below. 

MogS^Cl^eOPEtg + 6 PEtg > MogS^Cl^ePEtg + 6 OPEtg (9) 

This result suggested that the OPEtg was replaced by PEtg. The spectrum of the 

ether soluble product suggests that it was indeed triethylphosphine oxide which was 

liberated in the reaction, (See Table III.) 

The spectrum of the sample eluted from Celex-N-1 with acetonitrile was 

typical of a cluster compound with coordinated triethylphosphine. However, many of 

the peaks were not as intense as expected. 
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Table III. Absorption frequencies (cm'^), found in the infrared spectra of the 
products and reactants of reaction (9) 

MogS^Cl^GOPBtg MogS^Cl^ 6PEt^ OPBtg M^-PBtg» OPEtg^ 

Mid-IR: 
1558(w)C 1556(w) 1460(m) 
1414(m) 1416(m) 1414(m) 1420(m) 
1259(ms)® 1259(m,b) 1261(m,b) 1255(w) 1270(m) 

1167(w) 1161(ms,b) 1160(vs) 
1105(8,b) 

1099(m,b) 1050(m) 
1036(s) 1036(s) 1042(w) 1033(s) 1030(w) 

~1020(w) 
lOOO(sh) ~1000(vw) 1003(w) 1005(w) 

980(vw) 980(vw) 960(w) 
951(mw) 

770(vs) 762(vs) 776(s) 765(s) 780(vs) 
733(w) 733(s) 725(w) 

716(w) 716(m) 710(m) 700(w) 
696(m) 680(w) 

p. 

641(m) 
LV. 

621(m) 623(ms) 616(vw,b) 
479(m) 480(w) 

446(w) 450(w) 449(vs) 448(8) 
405(vs,b) 405(s) 413(m) 

390(w) 390(sh) 
365(w) 375(ms) 365(m) 
344(w) 352(ms) 
335(w) 335(m) 
290(m) 292(m) 

^Literature values for coordinated triethylphosphine [65,70]. 
^Literature values for triethylphosphine oxide [68]. 
^Relative intensities are given in parentheses: s=strong, m=medium, w=weak, 

sh=shoulder, b=broad, v=very. 
•^The band near 1260 may be due to the presence of silicone grease in the 

samples. 
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Far-infrared spectra 

Peaks assigned to cluster vibrations were found in all spectra. Therefore it can 

be said that the cluster remained intact throughout the reactions and separations. 

Specifically, the peaks at 620, 405-407, 390-391, 346-349, and 295-300 cm'^ were 

found in all the spectra, whether they were of pyridine or triethylphosphine 

derivatives. 

The far-infrared spectrum of [MogClglCl^ has two bands above 200 cm"^ [71]. 

These are located at 248 cm"^ and 329 cm'^ and have been attributed to stretching 

vibrations of Mo-Cl® and the Mo-CP-Mo bridges respectively [72]. The band at ca. 

250 cm'^ was absent in all the spectra reported here, supporting the absence of any 

terminal chlorides in these products. Insertion of a single sulfur into one of the 

bridging positions resulted in the presence of a new band at 421 cm'^ in the infrared 

spectrum [13]. This band was assigned by Michel as a vibration of Mo-S character. 

In a very general sense, these compounds showed two sets of bands associated 

with vibratio-ns of the cluster. Bands at 346 and 300 were not present in 

MogS8"6PEt3 and are therefore assumed, to arise predominantly from Mo-Cl 

contributions. The bands assigned as primarily Mo-S in nature were found at 391 

and 410 cm'^. In previous studies, the relative intensities of the bands associated 

with Mo-Cl and Mo-S vibrations were found to shift as more sulfur was substituted 

into the cluster [15,16]. Unfortunately, this phenomenon was not observed here due 

to the overlap of the ô(CCP) of the triethylphosphine ligand and the Mo-S band, vide 

infra. The absorption in this region predominated the far-IR region of the spectra. It 

also seems likely that in this region the bands would mix extensively and the result 
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would be vibrations resulting from the overall cluster, [MogCl^g_^^8gg]Lg, and not 

necessarily from Mo-S or Mo-Cl [73]. 

Coordinated pyridine gives rise to strong characteristic bands in its far-

infrared spectrum making it easy to identify [64]. The bands associated with in-

plane and out-of-plane ring deformations are found at around 630 cm'^ and 

430 cm"^, respectively [74]. In the pyridine derivative, relatively strong bands at 

631 cm'^ and 430 cm"^ further confirmed the presence of coordinated pyridine. 

The bands at 334 cm'^ and 365 cm'^ seen only in the triethylphosphine 

derivatives were due to Ô(CCP) bending modes of the triethylphosphine ligand [70]. 

An additional 6(CCP) mode is reported to occur at ca. 410 cm^'. Since strong bands 

were observed at 405-407 cm^' in all spectra, including the pyridine derivative, it is 

likely that this band overlaps another which arises from Mo-S vibrations. The metal-

phosphorus stretching vibration is expected to occur below 250 cm"^. 
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Table IV. Absorption frequencies (cm'^), found in the far-infrared spectra of some sulfided molybdenum cluster 
compounds 

A^ C® E® 

650(w)S 
631(s) 
620(in,vb) 621(s) 624(m) 622(m,b) 622{s,b) 617(m,b) 
612(m,br) 

600(w,vb) 
559(w,b) 536(s) 

480(w,vb) 465(vw) 478(w,b) 480(w,b) 
448(w,b) 

480(w,vb) 

430(m) 
405(8,b) 405(s,b) 404(ms) 406(s) 407(s,b) 405(8) 
391(w,sh) 391(sh) 391(s) 390(sh) 390(sh) 390(w,sh) 

365(w) 365(w) 365(sh) 365(w) 
349(w,b) 346(w) 346(vw) 346(w) 

334(w) 334(w) 334(vw) 334(w) 
295(m,b) 300(vw) 300(w) 
266{w,b) 

^Cluster product of equation (7), MogCl^g_^^8^ npy. 
^Soluble product of equation (8), MogCl^g_^^Sg 6PEtg, prior to chromatography. 
^First fraction collected &om basic alumina column, MogSg 6PEtg. 
^PEtg derivative eluted from basic alumina column with CHgCN. 
®PEtg derivative eluted from basic alumina column with EtOH. 
%Etg derivative eluted from Celex-N-1 with acetonitrile. 
^Relative intensities are given in parentheses: s=strong, m=medium, w=weak, sh=shoulder, b=broad, v=very. 
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Nuclear Magnetic Resonance Spectra 

The use of triethylphosphine as the terminal ligand was to aid in solubility of 

the product clusters, but also served as a means of studying the symmetry of the 

clusters by ^ nmr. One can assume each phosphorus atom to have the same 

symmetry as the molybdenum atom it is coordinated to. Consequently, the number 

of symmetry independent molybdenum atoms should be the same as the number of 

independent phosphorus atoms. Resonances were observed downfield from the rest 

of the resonances in the spectra near 45 and 55 ppm. These were due to the presence 

of 0=PEtg and S=PEtg respectively [75]. From the spectrum of the parent mixture 

shown in Figure 6, the presence of free triethylphosphine can be deduced from the 

band at -19 ppm from phosphoric acid [75]. Most likely, this uncoordinated ligand 

was the source of the oxidized products, triethylphosphine oxide and 

triethylphosphine sulfide. The triethylphosphine sulfide was probably formed in the 

reaction of the MogCl^g_^^Sg."npy with triethylphosphine. The sulfide source would 

have been any-SH' or S^' which incorporated into the terminal coordination sites of 

the cluster in the early steps of the sulfide substitution. It was not unreasonable for 

the triethylphosphine oxide product to be seen since the materials were not strictly 

kept from air during the chromatography. 

The bands due to triethylphosphine Ugands of cluster products are most likely 

those found in the region of 5 to 25 ppm. When coordinated, the resonance for 

triethylphosphine is shifted downfield by 40 ppm to as much as 70 ppm [76]. The 

strong resonance at 19 ppm was that of MogSg 6PBtg [23]. 
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Figure 6. ^^Phosphorus nuclear magnetic resonance spectrum of MogCl^g_^^8^ GPEtg before chromatography 
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In the purified cluster products, these multiplets are only slightly simplified. 

In the ethanol eluted product (Figure 7), both 8=PBtg and 0=PEtg are present. 

Additionally, the cluster resonances occur in the region of 5 to 15 ppm, a smaller 

range than in the parent mixture, but these are still unresolved. The general shape 

of the "band" is such that it does appear to be caused by a large number of resonances 

and not just a single, broad band. Also, the band at 51 ppm which arises from OPEtg 

has much stronger relative intensity. A new weak broad band at 75 ppm may be due 

to coordinated OPEtg. These results seem to point to the cluster being primarily 

coordinated by PEtg with OPEtg being an impurity. 

The shape of the spectrum is not an entirely unexpected result when one 

considers the number of isomers of the MogS^Cl^ cluster that can exist. A total of 

six different isomers with symmetries T^, C2, Cg, D2^, and Cg^ are possible. In 

addition to the symmetrically independent phosphorus atoms each isomer would 

have, weak phosphorus-phosphorus coupling is also expected. The phosphorus atoms 

are separated by three bonds. With all this in mind one can see how a very 

complicated spectrum would arise in the absence of isomeric purity. 

Electronic Structures 

Up to four sulfides can be substituted into the bridging ligand sites of the 

[MogClg]^"*" cluster before oxidation is expected. The clusters would fit the general 

formula, (0 ^ x ^ 4), and will have 24 electrons per cluster. 

Further substitution beyond four sulfides then would result in neutral, oxidized 

clusters with 20 to 23 electrons per cluster, [MogS^Clg_^], where 4 < x ̂  8. 
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Figure 7. ^^Phosphorus nudear magnetic resonance spectrum of "MogS^Cl^ 60PEtg" 
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The three major fractions isolated by chromatography contain clusters that 

best fit the formulas [MogS^Cl^], [Mog8_gCLg], and [MogSg]. The first and last are 

presumed to contain single stoichiometiy clusters while the [MogS^gCl^g] product is 

most likely a mixture of [MogSgClg] and [MogSgCl2], and possibly even [MogS^Cl]. 

The [MO0S4CI4] cluster is expected to be a 24 electron cluster and should be 

diamagnetic. The [MogSg] cluster is a 20 electron cluster and should also be 

diamagnetic. The final product must contain some [MogSgClg] which is most surely 

a paramagnetic 23 electron species. The UV/visible spectra and electron 

paramagnetic resonance spectra were used to confirm this. 

UV/visible spectra 

The electronic structure of the [MogXg]^"*" clusters has an eg level as the 

HOMO level when 24 electrons per cluster are present. This level is filled for 24 

electron species. The only possible electronic transitions are high in energy near the 

ultraviolet region, thus accounting for the yellow color of such clusters. Oxidation of 

the cluster leads to removal of electrons from the Cg level and allows for transition of 

electrons from the lower t2^ level up to the vacancies in the Cg level in the visible 

region of the spectrum. Thus, unoxidized species would not exhibit such a transition 

while oxidized species should. Such is the case observed for these compounds. 

The spectra of the three major products are shown in Figure 8. As can easily 

be seen, the band at 591 is seen only in the spectrum of MogSg GPEtg and as a weak 

shoulder in the spectrum of MogSgClg 6PEtg. It most likely arises from the 

transition from the highest t2^ level to the eg level. It is absent in the spectrum of 
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Figure 8. The electronic spectra of MogSg GPEtg (a), MogSgClg SPEtg (b), and 
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MogS4Cl4'6PEt3. This indicates that indeed, the MogS^Cl^'BL product contains no 

oxidized cluster. Unfortunately, the absorption is not resolved enough in the case of 

the MogSgClg cluster product to assign a precise wavelength and thus, make a 

comparison between the transitions of the two compounds. The probability that the 

MogS^gCl^g product is a mixture of at least two different compositions (MogSgClg 

and MogSgClg), may add to the poor resolution. 

EPR spectra 

The epr spectra of the products are shown in Figure 9, The signal from the 

MogSs'BPEtg product is very weak, in accord with the expected diamagnetism of the 

species. An unexpected result is the strong signal from the MogS^Cl^ sample. 

Because of the results reported above from the UV/visible spectrum of this material, 

it is presumed to arise from the presence of a paramagnetic impurity, and not an 

oxidized cluster species. Its shape and temperature dependence are significantly 

different from the spectrum of the [MogS^gCl^g] product. At room temperature, no 

signal is observed at all. for the [MogS^Cl^] product while the [MogS^gCl^g] product 

does ^hibit a spectrum. 

The signal of the MogSgClg cluster product is worth examining more closely. 

It is not entirely straight forward. It appears that it may have more than one 

paramagnetic species. The first part of the spectrum looks like it arises from an 

unsymmetric species. The later peaks however are difficult to explain. Because the 

spectrum could only be scanned, that is, data could not be acquired, curve integration 

and model fitting could not be done. Also, in the absence of other spectra which may 
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Figure 9. The low temperature (113 K), epr spectra of MogSg-GPEto (a), 
MogSgClg'SFEtg (b), and MogS^Cl^ GOPEtg (c) 
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show variations in relative intensities of the peaks and therefore provide information 

on which peaks arise from the same species, strict assignments of g-values is 

impossible. 
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CONCLUSIONS 

The work described in Part 1 has confirmed that the sulfidation of MoqC1]^2 

occurs at moderate temperature (118°C), when MogCl^g is reacted with sodium 

hydrosulfide in the presence of base, sodium butoxide. The reaction of four 

equivalents of sodium hydrosulfide per cluster produces a mixture of sulfided clusters 

as products, including the completely sulfided MogSg cluster species. 

Separation of the mixture was accomplished on basic alumina columns, and 

best separations were obtained when a non-ionic cellulose column was used first. 

The retention mechanism was most likely the attraction between aluminum of the 

column and the chloride of the cluster. The MogSg'GPEtg cluster was not adsorbed 

at all. The elemental analyses of the other products isolated fit the formulas 

Mo6S^5Cl_3"6PEt3 and Mog8^C1^ 60PEtg reasonably well. The 

MogS_.gCl_g GPEtg product is most likely a mixture of MogSgClg and MogSgCl2, 

and possibly MogSyCl, cluster containing materials and exhibits a strong signal in 

the epr spectrum confirming the presence of an odd electron species such as 

MogSgClg. Although the MogS^Cl^ cluster containing product also showed a 

paramagnetic signal, the UV/visible spectrum did not indicate the presence of a 

reduced cluster by the absence of the absorption at around 590 nm. This band was 

observed in the spectra of the other products, confirming that they were reduced 

clusters. 

Microcrystalline material was obtained by recrystallization of the major 

product, MogS^Cl^'GOPEtg, from methylene chloride solution. Also, this material 
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was converted back to the Mog8_^Cl^"6PEtg species by reaction with excess 

triethylphosphine in refluxing toluene. Crystalline material of this compound was 

also obtainable but single crystals suitable for structure analysis were not. 

The infrared spectra of the compounds confirmed the presence of coordinated 

triethylphosphine or triethylphosphine oxide. Also found in the spectra were 

absorption bands in the regions expected for cluster vibrations associated with 

primarily molybdenum-chlorine and molybdenum-sulfur vibrations. 

Triethylphosphine oxide seemed to have been replaced by triethylphosphine 

when MogS^Cl^ GOPBtg was reacted with excess triethylphosphine in refluxing 

toluene. An x-ray powder pattern of the material revealed that it was to some extent 

crystalline but single crystals were not recovered. 
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PART 2. REACTIVITY OF MogSg GPEtg: REMOVAL OF THE OUTER LIGANDS 
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INTRODUCTION 

As a group of compounds, the Chevrel phases, M^MogSg (M = Pb, Cu, and 

many other ternary metals), and also the metastable binary compound MogSg 

possess many interesting properties [4]. Some of the compounds are superconducting 

at relatively high temperatures. The structure of these materials contains channels 

where the ternary metal atoms are found. These channels allow for high ionic 

conductivity of many ternary metal cations [7]. Furthermore, these materials exhibit 

catalytic activity for hydrodesulfurization [6]. Because of their interesting 

properties, this class of compounds has been extensively studied. 

The ternary Chevrel phases are usually prepared by normal solid state 

methods at high temperatures. The binary, however, is unstable at temperatures 

above 468®C and is prepared only by first preparing a suitable ternary, which is 

subsequently oxidized with removal of the ternary metal ion [17]. For some time 

now, chemists have been looking into ways of preparing solid state materials, 

especially metastable compounds, from low temperature routes [18,19]. Many 

methods have been developed for the synthesis of metal oxides, nitrides, and also 

sulfides. 

A low-temperature route to the binary Chevrel phase, MogSg, has become 

more realizable since the preparation of the molecular compound MogSg 6PEtg 

[23,24]. This work reports attempts to prepare the Chevrel phase compound, MogSg, 

or a ternary phase, MMogSg, by removal of the triethylphosphine ligands of the 

molecular MogSg 6PEtg compound. 
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EXPERIMENTAL 

Materials 

Reagents 

MogCl]^2> or a-MoCl2, was prepared by the high temperature 

conproportionation method described by Koknat et al. [58]. The compound was 

stored in a nitrogen atmosphere diybox (dewpoint -75°C). Sodium hydrosulfide was 

prepared by the method described by Brauer [59]. Hydrogen sulfide was bubbled 

through a solution of sodium ethoxide. The sodium hydrosulfide was recovered by 

precipitation from ether solution. Sodium butoxide was prepared by dissolution of 

sodium metal in dry butanol. The resulting solution was standardized by 

hydrolyzing an aliquot and diluting it to volume with distilled water. The hydroxide 

solution was then titrated against standard potassium hydrogen phthalate. The 

solution was stored under nitrogen and syringed as needed. 

Calcium hydride was used to dry pyridine. Following a period of reflux over 

CaHg, dry pyridine was obtained by fractional distillation under a slow flow of dry 

nitrogen, or by vacuum distillation onto 4Â molecular sieves. Triethylphosphine was 

used as obtained from Aldrich Chemicals and stored under dry nitrogen. 

Molybdenum hexacarbonyl was used as obtained from Pressure Chemical 

Company. Dicobalt octacarbonyl was purchased from Strem Chemicals and kept 

refrigerated. It was sublimed prior to use. Propylene sulfide was obtained from 

Aldrich Chemicals and was stored under nitrogen in the refrigerator. Copper(I) 

chloride was obtained from Fisher Scientific and was dried at 140°C before use. 
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There was indication of an oxidized impurity due to the presence of a green color. A 

chlorine analysis however showed the impurity to be minor. (Calc. for CuCl: CI, 

35.81%. Found; CI, 34.0%.) The cuprous chloride was used without purification and 

was stored in a desiccator. 

Solvents 

Butanol was dried with sodium metal and subsequently distilled onto 

outgassed 4Â molecular sieves. Methanol was puriAed by treatment with either 

sodium metal or sodium methoxide followed by vacuum distillation onto outgassed 

3Â molecular sieves. Acetonitrile was refluxed over phosphorus pentoxide to remove 

water. Following this procedure, the acetonitrile was vacuum distilled onto 

outgassed 3Â molecular sieves. Toluene was dried by refluxing over calcium hydride. 

It then was distilled onto 4À molecular sieves. 

Analytical Procedures 

Chlorine was determined by potentiometric titration of neutralized solutions 

with standard AgNOg solution using a Ag/AgCl electrode with a silver electrode as 

the reference. The endpoint was determined by the second derivative method. 

Microanalyses for molybdenum, sulfur, phosphorus, carbon, and hydrogen were 

obtained from Galbraith Laboratories [61]. 
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Physical Measurements 

Infrared Spectroscopy 

Infrared spectra were obtained from an IR/90 Fourier Transform Infrared 

Spectrometer made by IBM Instruments, Inc. Samples were prepared as Nujol 

mulls. The mulls were pressed between cesium iodide plates to collect data. 

Reference spectra were obtained using an empty sample chamber. The sample 

chamber was constantly purged with nitrogen during the collection of data. Mid-

infrared (4000-400 cm"^), and far-infrared (600-200 cm"^), spectra were recorded 

separately. 

X-ray Powder Diffraction 

An Enraf Nonius Delft FR552 Guinier camera was used to obtain x-ray powder 

patterns. A General Electric XRD-5 generator with a Philips normal focus tube and 

a Cu target was used to generate the x-rays. Air sensitive samples were ground 

thoroughly then mounted between strips of cellophane tape to protect them from air. 

Powdered NBS silicon was used as an internal standard. 

Synthetic Methods 

The procedure used to prepare MogSg 6PEtg was developed by Laughlin and 

reported in reference 23. 6.0 g MogClj2 mmol), and 2.7 g NaSH (48 mmol), were 

weighed in the drybox. 150 mL of dry n-butanol were syringed into the reaction flask 

under nitrogen flow. Ca. 11.5 mL of 2.0SM NaOBu were syringed into the mixture 
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(24 mmol). Additionally, 5 mL of dry pyridine were syringed into the flask. The 

mixture was brought to reflux for 3 days. 

After the initial reflux period, the reaction products were filtered. A colorless 

filtrate and dark brown solid resulted. A methanol extraction was begun and 

proceeded for 4 days. After this time, an orange filtrate and brown solid remained. 

The product was dried and further reacted with 0.68 g NaSH (12 mmol), in refltixing 

butanol for two days followed by another methanol extraction. 

The resulting pyrophoric MogSg npy was further reacted with 16 mL (excess), 

of triethylphosphine in refluxing toluene for 24 hours to prepare the soluble 

Mo6S8*6PEt3 cluster. Filtering the products gave soluble MogSg*6PEtg as the major 

product. It was stored in a nitrogen drybox before ftirther reaction. The material 

was identified by its far-infrared spectrum. The insoluble fraction was pyrophoric 

and was probably an incompletely ligated species. 

Reaction of MogSg 6PEtg with 000(00)3 

0.50 grams MogSg 6PEtg (0.32 mmol), and 0.7 grams of freshly sublimed 

002(00)g (2.0 mmol), were dissolved in 40 mL of dry toluene. The mixture was 

stirred at room temperature for 2 days. Bubbling was observed for the first few 

minutes, indicating the evolution of 00. The reaction proceeded for 2 days before it 

was filtered and extracted with the reaction solvent for over a week. Yield: 0.2 g 

insoluble material, 0.7 g soluble material. Infrared spectra and microanalyses were 

obtained for the insoluble fraction. Found: Mo, 36.16%; S, 14.82%; P, 4.00%; 0, 

12.21%; H, 2.94%; 8:Mog, 7.36; P:Mog, 2.06. 
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Reaction of MogSg'SPEtg with molybdenum hexacarbonyl 

1.0 gram of MogSg GPEtg (0.65 mmol), and 1.0 gram Mo(CO)g (3.8 mmol), 

were combined in the drybox. 30 mL of dry acetonitrile were syringed into the 

mixture. The mixture was brought to reflux with stirring. 

Initially, no solubility was observed but as reflux temperature was achieved, 

the solution became darker. The reaction proceeded for 3 days before the mixture 

was filtered and extracted with the reaction solvent. Further extraction was done 

with toluene. Infrared spectra and an x-ray powder pattern were obtained for the 

insoluble fraction but no analyses were done on this material. 

Reduction of the cluster with zinc in the presence of Mo(CO)g 

In an attempt to convert the isolated triethylphosphine cluster, MogSg 6PEtg, 

to the Chevrel phase, MMogSg, where in this case M = Zn, the following reaction was 

attempted. 0.69 grams of MogSg*6PEtg (0.45 mmol), ca. 0.03 g Zn metal (0.46 mmol), 

and 1.4 g Mo(CO)g (5.3 mmol), were combined in the drybox. 40 mL acetonitrile were 

vacuum distilled into the flask. The mixture was stirred and brought to reflux for 2 

days. The resulting product mixture was filtered and the insoluble material was 

extracted with the reaction solvent. The x-ray powder diffraction pattern of the 

insoluble material showed only a single line which corresponded to the 100% relative 

intensity line of zinc metal. 
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Reaction of MogSg 6PEtg with cuprous chloride 

0.6 grams MogSg 6PEtg (0.39 mmol) were combined with 0.23 grams CuCl (2.3 

mmol) in drybox. 40 mL dry toluene were syringed into the flask and the mixture 

was brought to reflux for three days. 

In contrast to the previous reactions discussed here, the filtrate resulting from 

this process was completely colorless. The filtrate was dried under vacuum. No 

material was recovered from this fraction. The insoluble material was extracted with 

dry toluene to remove any [CuCKPEtg)]^ that may have been formed during reaction. 

Again, no material was isolated from the filtrate. An ethanol extraction was also 

done to remove any unreacted CuCl. A slight yellowing of the filtrate was observed, 

yet, very little material was recovered. 

Infrared spectra were obtained for the insoluble material. An x-ray powder 

pattern was also obtained which showed no diffraction lines. Analysis: Calculated 

for Mog8g 2PEtg 5CuCl: Mo, 36.82%; S, 16.41%; C, 9.22%; H, 1.94%; CI, 11.34%; P, 

3.96%. Found: Mo, 36.73%; S, 17.47%; C, 8.78%; H, 1.85%; CI, 10.80%. 

Reaction of MogSg 6PEtg with CuCl in acetonitrile 

0.5 g MogSg 6PEtg (0.3 mmol), and 0.22 g CuCl (2.2 mmol), were weighed in 

the drybox. 45 mL dry acetonitrile were syringed into the reaction flask under 

nitrogen flow. The mixture was brought to reflux for about 2 1/2 days. An extraction 

with the reaction solvent followed. The soluble fraction was dried in vacuo. Yield 

was 0.38 grams of insoluble material and 0.16 grams of soluble material. Analysis of 

the insoluble product: Found: CI, 9.79%. 



www.manaraa.com

66 

Reaction of MogSg 6PEtg with propylene sulfide 

1.00 g MogSg 6PBtg (0.65 mmol) were dissolved in 30 mL dry toluene. 0.35 

mL propylene sulfide (4.5 mmol) were syringed into the flask under nitrogen flow. 

The mixture was brought to reflux with stirring. Once reflux temperature was 

obtained, solid began to form along sides of the flask. Reflux was maintained for two 

days. 

The resulting mixture was filtered. The major product was insoluble. An 

extraction with the reaction solvent was performed for 1 1/2 days. Yield was 0.79 

grams of insoluble product. A mid-infrared spectrum was obtained for the insoluble 

fraction. Microanalyses were obtained. Calculated for MogSg'5SPEtg: Mo, 36.56%; 

S, 26.33%; C, 22.76%; H, 4.78%; P, 9.78%. Found: Mo, 34.23%; S, 24.69%; C, 18.99%; 

H, 3.60%; S:Mog= 12.95. 

The soluble material was dried as well. During this process, the material was 

slightly warmed and white needles sublimed above the heating mantle region. 

Infrared spectroscopy was used to determine that this colorless product was 

triethylphosphine sulfide. 

The reaction of 0.5 grams of the insoluble material with a two-fold excess of 

triethylphosphine in refluxing toluene produced a soluble product. The filtered 

solution was dried at 0°C in vacuo to prevent loss of the fairly volatile 

triethylphosphine sulfide. The triethylphosphine sulfide was separated from the rest 

of the products by slight warming. The colorless triethylphosphine sulfide sublimed 
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to the cooler region of the vessel. Infrared spectroscopy confirmed the identity of this 

material. Yield of SPEtg = 0.18g. 
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RESULTS AND DISCUSSION 

Syntheses 

In each procedure described in this section, the goal was to remove all the 

triethylphosphine ligands from MogSg GPEtg to produce a Chevrel phase compound, 

either MogSg or MMogSg. In general, two approaches were taken. One was to react 

the molecular complex with a compound or complex which would act as a phosphine 

acceptor, with hope that phosphine transfer would occur. The second was to 

chemically alter the triethylphosphine ligand to give a non-coordinating or very 

weakly coordinating species. 

Triethylphosphine is known to displace carbon monoxide in transition metal 

carbonyls. In this work, MogSg'BPEtg was reacted with molybdenum hexacarbonyl 

and dicobalt octacarbonyl. 

As written in equation (10), three equivalents of Co2(CO)g are required to 

completely remove the PEtg ligands of the cluster. 

MogSg GPEtg + 3 Co2(CO)g ^ MogSg + 3 [Co(CO)g(PEtg)2][Co(CO)4] + 3 CO (10) 

When this reaction was carried out at room temperature (the Co2(CO)g species 

decomposes at 52°C), partial deligation of the molybdenum sulfide cluster occurred. 

Approximately 20% of the product was insoluble in toluene. This was taken as an 

indication that this product was no longer the completely ligated MogSg 6PEtg, but 

rather, was a species like MogSg nPEtg, where n < 6. The elemental analysis of this 
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product shows that phosphine ligand was lost during the reaction. The P:Mo ratio is 

2.0 for the product. However, there is also evidence of other impurity because of the 

overall low percentages found. Dicobalt octacarbonyl or a derivative of this is 

probably present. Support for this is found in the mid-infrared spectrum of the 

material where there is evidence of the presence of carbonyl ligands. 

When MogSg GPBtg was reacted with molybdenum hexacarbonyl according to 

equation (11), similar results were obtained. 

MogSg-ePEtg + 6 Mo{CO)6 MogSg + 6 Mo(CO)5_^(PEtgXCH3CN)^ (11) 

Elemental analysis was not done for this sample because of the likely presence of a 

molybdenum carbonyl complex. 

Another approach to the transfer of phosphine ligands was to try to reduce the 

cluster simultaneously, that is, to prepare a ternary phase upon removal of the 

ligands. 

MogSg-ePEtg + Zn + 6 Mo(CO)g ZnMogSg + 6 Mo(CO)3(PEt3)L2 (12) 

In this reaction, only a small fraction of the product was insoluble. Its powder 

pattern showed that metallic zinc remained unreacted. Thus, it is not likely that the 

cluster was reduced. 

Copper(I) chloride is also known to form complexes with trialkylphosphines. 

The triethylphosphine derivative is a cubane-like species, [CuCl(PEtg)]^ [77]. Thus, 
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MoeSs'ôPEts was reacted with CuCl with hope that the triethylphosphine ligand 

would preferentially bind to the Cu rather than the Mog cluster. The proposed 

reaction is written in equation (13). 

MogSg-ePEtg + 6 CuCl > MogSg +1 [CuCKPEtg)^ (13) 

The products of the above reaction performed in refluxing toluene were completely 

insoluble. The same reaction performed in acetonitrile however gave approximately 

30% soluble material. The de-ligated material is not expected to be soluble. The 

copper complex is slightly soluble in toluene. Extraction of the products with toluene 

should have removed any unreacted cluster complex as well as any [CuCl(PEt3)]^ 

formed in the reaction. Further extraction with ethanol was expected to remove any 

unreacted CuCl. The analysis of the dark brown insoluble product best fits a mixture 

of cluster complex and copper(I) complex. The presence of triethylphosphine is 

confirmed by the analysis, but no concrete evidence as to whether it is coordinated to 

the copper or to the cluster is available. A ratio of one cluster to 2 ligands to 5 CuCl 

entities is the best fit to the elemental analysis. This is curious since there is such a 

low ligand to cluster ratio yet still so high a copper(I) chloride to cluster ratio. 

Whether or not successful separation of the cluster from the copper(I) chloride species 

would also eliminate the ligand cannot be determined from the present data. 

An alternate approach to "pulling off the ligands of MogSg'6PEtg was to 

chemically alter the ligand itself. In this work, formation of only very weakly 
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coordinating triethylphosphine sulfide was attempted. Reacting MogSg 6PEtg with 

propylene sulfide was hoped to proceed as in equation (14). 

MogSg-ePEtg + 6 CHg^H-CHg MogSg + 6 S=PEt3 + 6 CHgCHCHg (14) 

S 

The insoluble product's analysis however did not fit any reasonable cluster 

formula. The sulfur to molybdenum cluster ratio was far greater than 8, yet the 

expected sulfide product, triethylphosphine sulfide, was confirmed by infrared 

spectroscopy. One explanation is that the cluster was oxidized to M0S2. This fits the 

sulfur to molybdenum ratio but is not indicated by the rest of the analysis or the 

infrared spectra. Characteristic peaks for MoSg at 385 and 470 cm'^ were also 

absent in the far-infrared spectrum [78]. 

The more likely possibility is that this species is a cluster with coordinated 

triethylphosphine sulfide. The reverse reaction of this product material with 

triethylphosphine in refluxing toluene produced a soluble product from which 

triethylphosphine sulfide was isolated. Also, the analysis fits the formulation of 

Mo6S8"5SPEt3 quite well. The replacement reaction is written below. 

Mog8g68PEtg + 6 PEtg MogSgGPEtg + 5 SPEtg (15) 

The yield of triethylphosphine sulfide corresponded to only about 3.5 moles of SPEtg 

liberated per mole of starting cluster. This is slightly low but that is expected since 
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not all of the triethylphosphine sulfide could be recovered. Also, it is possible that 

some of the triethylphosphine sulfide was lost during the sublimation procedure. 

Only the insoluble products of all the reactions described above were examined 

because de-ligation of the MogSg'GPEtg cluster should give an insoluble product. If 

one ligand was removed, an open coordination site would become available and a 

bridging sulfide of another cluster would be a likely candidate to fill that open site. 

Thus, a dimer may be formed, [(Mog8y8^/§)8^/^Lg]2. Further loss of terminal 

ligands is expected to result in further condensation of the cluster units to give 

material that is polymeric. To support this, many examples of pyridine derivatives of 

the sulfide chloride clusters are known where four ligands were found per cluster 

unit (i.e., MogCl^g.g^8^ 4py) [15,16]. These materials were always insoluble and the 

value of four ligands per cluster did not vary greatly. Such a species might be 

formulated [(Mog8g8^§)8§/^L^]^. 

Consequently, in the reactions attempted here, removal of only two ligands, 

and possibly as few as one ligand, per cluster would most likely result in an 

insoluble, polymeric or oligomeric species. It is probable that once such a species is 

formed and falls out of solution, no further reaction would take place. Thus, the 

removal of all six terminal ligands was probably hampered by the insolubility of 

intermediate species, MogSg'nPEtg, where n < 6, 

Other explanations must also be considered. The strong coordinating ability of 

the triethylphosphine ligand to the cluster is such a possibility. One of the earlier 

advantages of using triethylphosphine in the study of these clusters was to prepare a 

fully ligated and soluble cluster species. In order to break any Mo-S linkages 
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between clusters which formed in the first step of the sulfidation reaction, a strongly 

coordinating ligand was required. It may in fact be that the same properties of 

triethylphosphine that make it ideal for the preparation of the molecular cluster 

species, make MogSg GPEtg an undesirable candidate as a precursor to MogSg. 

A further complication is that the products are amorphous to x-rays. They are 

not however pyrophoric as seen in some other incompletely ligated cluster species. 

The lack of crystallinity is no doubt a result of the low reaction temperatures. If in 

fact a low temperature route can be found to a de-ligated species, it will probably not 

produce a crystalline material. What effect the non-crystallinity would have on the 

properties of such materials is uncertain. 

Infrared Spectra 

Table V lists the infrared peaks observed for MogSg'GPEtg and the products of 

the reactions described above. All compounds gave similar spectra. The peaks 

reported in the literature for coordinated triethylphosphine are also given for 

reference. 

Peaks associated with the vibrations of coordinated triethylphosphine were 

observed to some extent in all spectra [65,70]. The strongest peaks arising from 

triethylphosphine ligand are found at ca. 1034 cm"^ and 760 to 765 cm"^ in the mid-

IR region. A strong peak at 409 cm"^ and weaker but distinctive peaks at 365 and 

334 cm"^ are found in the far-IR spectrum. The weaker peaks were absent, while the 

strong peaks had a much reduced intensity in the spectrum of the product of the 

reaction with propylene sulfide. In the product of reaction with CuCl, equation (13), 
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Table V. Absorption frequencies (cm"^), found in the infrared spectra of 
MogSg'GPEtg and products of deligation reactions 

A« CC D® E® EtgP-^M^ 

Mid-IR Region: 

1416(mw) 1420(w) 
1261(m) 1259(mw) 

1171(w) 

1097(inw,b) 1099(w) 
1032(ms) 1036(m) 

~1030(sh) 

802(m,b) 

760(m) 

Far-IR Region: 

624{m) 
559(w,b) 
478(w,b) 

404(ms) 
391(s) 
365(w) 
334(w) 

800(w) 

766(w) 

624(w) 

402(mw) 

1915(m)g 
1416(w) 
1259(m) 

1096(w) 
1036(018) 

804(mw) 

764(m) 

623(mw) 

404(ms) 
390(sh) 

-1410(vw) 
1261(w,b) 

1105(w,b) 

1040(w,b) 

783(ms) 

626(w) 

-490(w;sh) 
455(m8,b) 

411(8,b) 

372(m,b) 

2006(w,b) 
1410(w) 
1256(w) • 

1034(ms) 

920(w) 
845(w,b) 

766(m) 

621(m) 
555(m) 

428(w) 
404(s) 

340(w,sh) 

1255(w) 

1033(8) 
1005(w) 

980(vw) 

765(8) 
733(8) 
710(m) 
680(w) 

641(m) 

413(m) 

365(m) 
330(m) 

«MogSg-ePEtg. 
"The insoluble product of equation (14) done in toluene. 
®The insoluble product of equation (11) done in CHgCN. 
^The insoluble product of equation (13) done in toluene. 
®The insoluble product of equation (10) done in toluene. 
^Literature values for coordinated triethylphosphine [65,70]. 
^Relative intensities given in parentheses: s=8trong, m=medium, w=weak, 

v=very, sh=shoulder, b=broad. 
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these peaks were also much weaker than expected. In fact, the characteristic peak at 

760 to 766 was absent in this product's spectrum. The spectra of all other products 

contained all of the characteristic peaks of MogSg'6PEtgand some additional peaks. 

The products of the reactions with transition metal carbonyls showed 

vibrations in the carbonyl stretching region (1900 to 2000 cm'^). These were 

probably mixtures of cluster products and carbonyl complex. In the product of the 

reaction with CuCl, the bands at 783 and 455 cm"^ arise from the presence of CuCl. 

Its presence is expected from the elemental analysis. It appears however that none 

of the reactions produced a cluster product that was completely without the 

triethylphosphine ligand. 

The reaction with propylene sulfide gave a product whose IR spectrum gave 

typical vibrations for a triethylphosphine derivative. The peaks were very broad and 

weak however, even those expected to be quite strong. No evidence for 

triethylphosphine sulfide, either free or coordinated, was observed. However, the 

reaction of this material with triethylphosphine definitely liberated 

triethylphosphine sulfide. The peaks for this material and the reverse reaction 

products are given in Table VI. It is possible that the peaks for Mog8g 6PEtg are 

weak and broad because of partial decomposition. The far-infrared peaks for PEtg 

are much less distinct than expected. This material was warmed slightly to allow the 

SPEtg to sublime away and this warming may have caused decomposition. 
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Table VI. Absorption frequencies (cm'^), found in the infrared spectra of the 
reactants and products of equation (15) 

MogSgSSPEtg a SPEtg* MogSgGPEtg* 

Mid-IR Region; 

1420(vw)^ 
1261(w,b) 

1105(w,b) 

1040(w,b) 

783(ms) 

Far-IR Region: 

626(w) 

490(w,sh) 
455(ms,b) 

411(8,b) 

372(m,b) 

1416(w) 
1269(mw) 
1246(m) 
1163(m) 

1097(vw) 
1045(ms) 

995(ms) 
770(8) 
690(mw) 
673(m) 

536(s) 

408(m) 

1410(w) 
1258(wm) 

1034(m) 

762(mw) 

623(w) 

391(w,vb) 

^Product of equation (13). 
^Colorless product of equation (15) sublimed from the rest of the products. 
'^Brown soluble product of equation (15) left after sublimation. 
^Relative intensities given in parentheses: s=8trong, m=medium, w=weak, 

v=very, sh=shoulder, b=broad. 
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CONCLUSIONS 

In the research described here, attempts were made to convert MogSg GPEtg 

to a Chevrel phase compound. Unfortunately, the attempts were not successful. 

There is some evidence that phosphine ligand removal did occur. Products were 

insoluble and absorptions in the infrared spectra where the vibrations of coordinated 

triethylphosphine are expected were weak. Elemental analyses however showed that 

at least some triethylphosphine remained in all products. In the reaction with 

propylene sulfide, it appears that the ligands of MogSg*6PEtg were indeed sulfided to 

give MogSg 68PEtg. It is clear that complete de-ligation did not occur in any of the 

cases described. 

In addition, difficulties in separation of reaction products existed. The 

amorphous nature of the products points to probable difficulties in obtaining 

crystalline materials from low-temperature reactions, even if complete de-ligation is 

accomplished. 
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PART 3. PREPARATION OF THIOETHER DERIVATIVES OF MogSg 6L 
LIGAND EXCHANGE 
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INTRODUCTION 

A great deal of research has focussed on compounds that contain hexanuclear 

molybdenum clusters. The clusters, as found in MogCl^g and MMogSg, are 

generally formed at high temperatures through solid state reaction methods [3,58]; 

however, the molecular compound, MogSg GPEtg, can also be prepared by the 

reductive dimerization of Mog8^Cl^(PEtg)^(MeOH) at room temperature [24]. 

Much is known about the reactivity of the molecular halide cluster compounds. 

Substitution of the terminal ligands of the halide clusters occurs with relative ease. 

The pg-ligands of the clusters can be substituted with other halides, alkoxides, and 

chalcogenides as well [13,42,44-47]. 

Since the discovery and characterization of the molecular cluster with sulfide 

bridging ligands mentioned above [23,24], the reactivity of this compound has been 

studied very little. Substitution of the terminal ligands of the octa-^ig-

sulfidohexamolybdenum cluster was examined here. Amine and phosphine 

derivatives of the neutral clusters, MogCl^g_^^Sg'6L, have previously been prepared 

[15,16]. The goal of this study was to prepare a molecular cluster with sulfur donor 

ligands in the terminal positions. Because of the similarities to the Chevrel phases, 

these new compounds might be seen as molecular fragments of such materials. Also, 

the effect, if any, of the terminal ligand on the bonding within the cluster might be 

seen. 
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EXPERIMENTAL 

Materials 

Primary Reagents 

MogCl^g, or a-MoCl2, was prepared by the high temperature 

conproportionation method described by Koknat et al. [58]. The compound was 

stored in a nitrogen atmosphere drybox (dewpoint -75°C). Sodium hydrosulfide was 

prepared by the method described by Brauer [59]. Hydrogen sulfide was bubbled 

through a solution of sodium ethoxide. The sodium hydrosulfide was recovered by 

precipitation from ether solution. Sodium butoxide was prepared by dissolution of 

sodium metal in dry butanol. The resulting solution was standardized by 

hydrolyzing an aliquot and diluting it to volume with distilled water. The hydroxide 

solution was then titrated against standard potassium hydrogen phthalate. The 

solution was stored under nitrogen and syringed as needed. 

Calcium hydride was used to dry pyridine. Following a period of reflux over 

CaHg, dry pyridine was obtained by fractional distillation under a slow flow of dry 

nitrogen, or by vacuum distillation onto 4Â molecular sieves. n-Propylamine from 

Kodak Chemicals was used as obtained and was stored and transferred under 

vacuum. 

Thioether reagents were obtained from Aldrich Chemical Co. and were used 

without further purification. Ethyl sulfide and tetrahydrothiophene (THT), were 

stored under nitrogen. Thiophene was stored and transferred under vacuum. 
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Solvents 

Butanol was dried with sodium metal and subsequently distilled onto 

outgassed 4Â molecular sieves. Methanol was purified by treatment with either 

sodium metal or sodium methoxide followed by vacuum distillation onto outgassed 

3Â molecular sieves. Âcetonitrile was refluxed over phosphorus pentoxide to remove 

water. Following this procedure, the âcetonitrile was vacuum distilled onto 

outgassed 3Â molecular sieves. Toluene was dried by refluxing over calcium hydride 

then distilled onto 4Â molecular sieves. 

Physical Measurements 

Infrared spectroscopv 

Infrared spectra were obtained from an IR/90 Fourier Transform Infrared 

Spectrometer made by IBM Instruments, Inc. Samples were prepared as Nujol 

mulls. The mulls were pressed between cesium iodide plates to collect data. 

Reference spectra were obtained using blank cesium iodide plates or air. The sample 

chamber was constantly purged with nitrogen during the collection of data. Mid-

infrared (4000-400 cm"^), and far-infrared (600-200 cm"^), spectra were recorded 

separately. 

X-ray powder diffraction 

An Enraf Nonius Delft FR552 Guinier camera was used to obtain x-ray powder 

patterns. A General Electric XRD-5 generator with a Philips normal focus tube and 

a Cu target was used to generate the x-rays. Air sensitive samples were ground 
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thoroughly then mounted between strips of cellophane tape to protect them from air. 

Powdered N6S silicon was used as an internal standard. 

Synthetic Methods 

Preparation of FMogSg] npy 

The procedure used to prepare the MogSg cluster was developed by Laughlin 

and reported in reference 23. A modified version was used here. 6.0 g MogClj2 

mmol), and 2.7 g NaSH (48 mmol), were weighed in the drybox. 150 mL of dry 

n-butanol were syringed into the reaction flask under nitrogen flow. Ca. 11.5 mL of 

2.03M NaOBu were syringed into the mixture (24 mmol). Additionally, 5 mL of dry 

pyridine were syringed into the flask. The mixture was brought to reflux for 3 days. 

After the initial reflux period, the reaction products were filtered. A colorless 

filtrate and dark brown solid resulted. A methanol extraction was begun and 

proceeded for 4 days. After this time, an orange filtrate and brown solid remained. 

The product was dried and Airther reacted with 0.68 g NaSH (12 mmol), in refluxing 

butanol with added pyridine for two days followed by another methanol extraction. 

Preparation of Mog8g 6Pr"NH2 

The pyridine derivative obtained from the above procedure was dried, then 

extracted with neat -propylamine. The resulting solution was then stripped of 

solvent under a dynamic vacuum. The compound was identified by its infrared 

spectrum. 
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Reaction of MogSg'npy with thiophene 

0.5 grams of MogSg'npy (ca. 0.4 mmol) were weighed in the drybox. 

Approximately 35 mL of thiophene were vacuum distilled into the reaction flask. 

The mixture was brought to reflux with stirring for 24 hours. Filtration of the 

products resulted in a colorless filtrate and dark brown solid. The insoluble fraction 

was extracted with toluene to recover any soluble product but none was obtained. 

Infrared spectra of the insoluble product were obtained. 

Reaction of MogSg'npy with ethyl sulfide 

0.5 grams of MogSg'npy (ca. 0.4 mmol) were weighed in the drybox. 

Approximately 35 mL of ethyl sulfide were syringed into the reaction flask under 

nitrogen flow. The mixture was brought to reflux with stirring for 24 hours. 

Filtration of the products resulted in a pale pink filtrate and dark brown solid. The 

insoluble fraction was extracted with ethyl sulfide. The filtrate was stripped under 

vacuum and toluene was used to further extract the insoluble material in the same 

vessel. An extraction with acetonitrile also failed to provide any soluble material. 

Infrared spectra of the insoluble and soluble material were obtained. 

Reaction of MogSg npy with tetrahydrothiophene 

0.5 grams of MogSg npy (ca. 0.4 mmol) were weighed in the drybox. 

Approximately 35 mL of tetrahydrothiophene (THT) were syringed into the reaction 

flask under nitrogen flow. The mixture was brought to reflux with stirring for 24 

hours. Filtration of the products resulted in a pink filtrate and dark brown solid. 
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The insoluble fraction was extracted with toluene to recover further material but 

very little material extracted. Infrared spectra of the insoluble material were 

obtained. The filtrate was placed in the refrigerator to promote crystal growth. After 

several weeks, solid had come out of solution but no signs of crystallinity were seen. 

Reaction of MogSg GPr^NHo with THT • 

0.25 grams of MogSg (6-x)PrNH2 were weighed in the drybox. Ca. 30 mL of 

THT were syringed into the reaction flask under nitrogen flow. The mixture was 

stirred and brought to reflux for 24 hours. Upon filtration, a dark purple solution 

and brown solid were obtained. Allowing the solution to sit at room temperature 

under a partial vacuum produced crystalline material. If allowed to sit for more than 

a few days, the solution turned to a brown color but any crystalline solid recovered 

from the solution was still purple when ground. Infrared and UV/visible spectra 

were obtained for the crystalline material. This material appears to be air stable for 

periods of at least a few months. 

Crystallographic Data Collection and Treatment 

Single crystals of MogSg"6THT were obtained from saturated THT solutions. 

Several cube-shaped crystals were examined. These purple crystals appeared to be 

well formed single crystals. Crystals were mounted in thin walled capillaries using 

silicone grease or to glass fibers using epoxy. All of the crystals showed signs of 

twinning to some extent in their peak profiles. A 0.08 mm x 0.08 mm x 0.08 mm 

crystal mounted in a capillary gave the best peak profiles and was chosen for data 
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diffractometer with a rotating anode source from Molecular Structure Corporation. 

Two sets of data were actually collected. A unique set was collected first. One 

octant of reflections with 26 values from 0 to 50° was collected. A total of 4248 

reflections were measured with 394 observed. The data set was worked up using the 

TEXSAN software package [79]. MITHRIL [80], a direct methods program, was used 

to determine the position of the unique Mo atom and the other atoms were 

determined from electron density maps. A partial structure was solved in the /a3 

space group. However, when the R-factor got down to about 12 to 15%, the 

refinement began to diverge. Re-examining the data and output more critically 

revealed that the data were not properly averaged. Also, the R-factor of averaging 

seemed to indicate that the Laue symmetry as well as the space group were 

incorrectly determined. Because of the limited number of data, working in a lower 

symmetry to refine the structure was impossible. Thus, a new set of data was 

collected. It became clear after much more work that the TEXSAN software is 

incompatible with cubic systems. 

With the second data set, a full hemisphere of reflections was scanned so that 

enough redundant data would be available for averaging. Standards chosen from a 

working set of 18 reflections were those with the best peak proxies. They were 

measured every 200 reflections and very little deviation in intensity was seen. In 

this set, a total of 24,317 reflections with 0° < 20 < 50° were collected. Of these 

reflections, approximately 10% were observed. Crystal data and collection 
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information are listed in Table VII. Scattering factors were taken from Cromer and 

Weber [81]. Hydrogen scattering factors were taken from Stewart et al. [82]. 

This data set was averaged using the CHESCAT software package. At first, 

the Laue symmetry 3 and the trigonal space group RZ were used. An R of averaging 

of 4.7% was obtained. Rhombohedral axes were used so that the previous partial 

structure in the cubic system could be easily used as the model. The initial positions 

of the molybdenum atoms were determined by using the position from the previous 

structure and transforming it according to the differences in the orientation matrices 

of the two sets of data. Finally, the positions were transformed according to the four 

different possible orientations of the three-fold axis in the cubic system to find the 

one which corresponded to the unique axis of the trigonal system. The rest of the 

molybdenum positions and the sulfur positions were determined from electron 

density maps. The R-factor for this system went as low as 12 to 14% before the 

refinement diverged, clearly indicating the wrong choice of space group. 

Further work was then done to determine the true symmetry of the lattice. 

Superposition methods and a symmetry location program were used. The symmetry 

location output suggested that the system might be monoclinic and a great deal of 

effort went into determining the possible space group. Averaging the data in the 

Laue symmetry 2/m gave an R of averaging of 2.9 to 3.1%, depending on the 

definition of the unique axis. However, a good model was never found for these 

systems. 

Throughout the work to determine the symmetry and space group, it became 

clear that the R of averaging obtained from the TEXSAN software was erroneous and 
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Table VIL Crystallographic data for MogSg'GTHT 

formula 

molecular weight 

crystal system 

space group 

systematic absences 

cell dimensions 
a, Â 

v,Â3 

Z 

«^calcd. 
crystal morphology 

color 
crystal shape 
crystal size, mm 

H (Mo Ka), cm*^ 

A. Crystal Data 

MogSgCSC^Hg)^ 

1361.2 

cubic 

7a3 

hkl, h+k+l=2n+l; hkO, h(k)=2n+l 
hOl, h(l)=2n+l; Okl, k(l)=2n+l 

20.313 (5) 

8381.3 

8 

1.299 

purple 
cubic 
0.08x0.08x0.08 

23.941, (not applied) 
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Table VII (continued). 

instrument 

ra^ation 

B. Data Collection Parameters 

Rigaku AFC6R 

temperature, °C 

no. of orientation reflections 

scan method 

standard reflections 
number monitored 
frequency measured 
intensity variation 

data collection range 

octants collected 

no. of reflections measured 

no. of reflections with > 3o(FQ) 

Mo Ka, graphite monochromated 
X=0.7107Â 

20 

18 

20-0) 

every 200 reflections 
less than 2% 

2.00 ̂  20 < 50° 

h, ± k, ± 1 

24,317 

2767 

C. Structure Solution Information 

no. of averaged data 

refl/parameter 

R® 

V 

227, R=4.58% 

4.8 

6.0% 

4.6% 

»R=zl  IFq I-  IFG I  1 /2 IFQI .  

^R^=Zw( I Fq I - I Fj. I )2/ïw I Fo 12, w=1/o(Fo)2. 
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meaninglesB. Finally, the data were carefully examined by visual inspection. 

Several sets of reflections with permuted indices were compared. The observed 

intensities and extinctions most closely agreed with the /a3 space group. When the 

data set was averaged in the Laue symmetry m3 using the CHESCÂT software, an R 

of averaging of 4.6% was obtained. 

The space group 7a3 and this newly averaged data set were used for the rest of 

the structure solution. Finding the unique Mo position was difficult. Because of an 

unidentified error the direct methods program (MULTAN80) [83] in this software 

package could not be used. The Mo positions of the previous partial solutions were 

also incorrect. Finally, MITHRIL was run through the TEXSAN software on the 

unaveraged or reduced data. A unique solution was obtained and the molybdenum 

position was correct. It was noted that the difference in the position determined with 

the second data set from the first was a shift of the origin by (J, |). Further 

calculations were done using the CHESCAT programs [84]. With the unique Mo 

position in the-refinement, an R-factor of 27.6% was achieved after 2 cycles. Sulfur 

and carbon atoms were located from subsequent electron density maps. With the 

addition of the sulfur atoms, an R-factor of 12.3% was achieved. The final positional 

parameters are given in Table VIII. Because of the limited data, the carbon atoms 

were refined isotropically. 
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Table VIII. Fractional atomic coordinates (xlO^), and isotropic temperature factors 
(Â2, x103), for MogSg GTHT» 

Atom X y z UorUave 

Mo 4588(2) 5271(2) 4226(2) 39^ 

8(1) 5571(5) 4920(5) 3654(5) 46^ 

8(2) 4160(6) 41G0(G) 4160(6) 49^ 

8(3) 4005(7) 5640 (6) 3158(6) 66^ 

C(l) 4582(22) 6031 (25) 2653(22) 79 (16) 

C(2) 4464 (31) 6670(30) 2543(30) 117(22) 

C(3) 3974 (34) 6869 (27) 2870 (30) 124 (25) 

C(4) 3584 (27) 6393 (30) 3293 (28) 117 (22) 

^Estimated standard deviations are given in parentheses and apply to the 
preceding digit. 

^For the atoms which were varied anisotropically, is given where U^ye is 
the average ofUjj, Ugg, and U33. 
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DISCUSSION 

Substitution Reactions 

Substitution of the outer ligands of mixed sulfide chloride clusters was studied 

by Laughlin [15]. In that work it was found that soluble 7i-propylamine and 

trimethylphosphine derivatives were formed upon substitution of MogSg'npy. The 

triethylphosphine derivative was found to form under somewhat more forcing 

conditions [23]. These were all soluble clusters with no intercluster Mo-S-Mo 

linkages. In this study, solubility was used as an indicator for complete substitution 

and ligation of the cluster. 

Replacement of pyridine and the disruption of intercluster Mo-S-Mo linkages 

by thioether ligands did not take place to any significant extent under the conditions 

used here. Reaction of MogSg'npy with neat ethyl sulfide, thiophene, and 

tetrahydrothiophene (THT), at reflux temperatures provided very little soluble 

material to isolate. In the case of thiophene, it appears that no reaction took place. 

With ethyl sulfide, hardly enough sample was isolated to get an infrared spectrum. 

More product was isolated from the soluble fraction of the THT substitution, but this 

was still not the major product. 

It was shown in previous work that the n-propylamine ligand could be 

partially stripped from the cluster under vacuum at room temperature [15]. For this 

reason, the formula is denoted here as MogSg-(6-x)PrNH2, where x increases with 

the time under vacuum. Because the ligands were so easily removed, it seemed a 
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good idea to try replacing the ligands of this derivative. In this case, only THT was 

tried due to its greater success in replacing the pyridine. 

In refluxing neat THT, the replacement seems to go fairly extensively. A very 

concentrated solution was achieved which gave crystalline material upon sitting for 

only one to two days. The solutions are not stable for more than a few days to a 

week. The solid however seems to be stable in air for at least several months. 

Structure of MogSg'fiTHT 

A diagram of the MogSg 6THT cluster is shown in Figure 10. The clusters are 

centered on the comers, edges, face centers, and the body center of the unit cell. The 

unit cell with only the Mog clusters is shown in Figure 11. The clusters are centered 

on sites of local 3 symmetry. Two of the eight bridging sulfur atoms lie on the 3-fold 

axis. The 3-fold symmetry of the cluster is demonstrated in Figure 12a. Figure 12b 

clearly shows the orientation of the ligands. Each THT ring bends over the cluster to 

leave the bridging sulfur atoms which are on the 3-fold axis exposed. 

Tables IX and X give bond lengths and angles of the cluster. Information on 

the ligand bonds and angles can be found in the Appendix. The Mo-Mo bond lengths 

are aU equivalent, within experimental error. Thus, the clusters have nearly perfect 

octahedral symmetry. All bond leng^s within the cluster are nearly the same as the 

triethylphosphine derivative [24]. However, the Mo-Mo bond distance of the THT 

derivative is about 2.64Â, somewhat shorter than the bond length of 2.66Â found for 

MoeSs'BPEts. This difference may in fact be due only to the large standard 

deviations of the bond lengths found for MogSg'6THT. 
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Figure 10. ORTEP diagram of MogSg 6THT with atom numbering scheme. 
Thermal ellipsoids are drawn at the 50% probability level 
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Figure 11. View of the unit cell of MogSg*6THT showing the Mog clusters 
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Figure 12. Additional views of MogSg'GTHT looking down the 3-fold axis (a), and 
with the 3-fold axis oriented vertically along the page (b) 
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Table IX. Selected bond distances (Â), in MogSg*6THT® 

Mo-Mo' 2.639 (6) Mo-S(2) 2.42 (2) 

Mo-Mo" 2.633 (6) Mo-S(3) 2.58(1) 

Mo-S(l) 2.42 (1) S(3)-C(l) 1.75 (5) 

Mo-Sd)' 2.44(1) S(3)-C(4) 1.77 (5) 

Mo-S(l)" 2.44(1) 

^Standard deviations are given in parentheses and refer to the preceding 
digit. 

Table X. Selected bond angles (deg), in MogSg'GTHT® 

Mo'-Mo-Mo' 60.0 (0) S(3)-Mo-S(l) 93.4 (4) 

Mo'-Mo-Mo" 59.9 (1) S(3).Mo-S(l)' 93.2 (4) 

Mo"-Mo-Mo" 60.2 (2) S(3)-Mo-S(l)" 94.0 (4) 

Mo'-Mo-Mo" 90.0 (0) S(3)-Mo-S(2) 93.4 (4) 

S(l)-Mo-S(l) 90.4 (3) Mo-S(l)-Mo' 65.8 (3) 

S(l)-Mo-S(2) 89.7 (3) Mo-S(l)-Mo" 65.7 (3) 

S(l)'-Mo-S(l)" 89.9 (3) Mo'-S(l)-Mo" 65.3 (3) 

S(l)'-Mo-S(2) 89.2 (3) Mo-S(2)-Mo' 66.1 (5) 

S(l)-Mo-S(l)' 173.3 (4) Mo-S(3)-C(l) 109. (2) 

S(l)"-Mo-S(2) 172.6 (4) Mo-S(3)-C(4) 110. (2) 

^Standard deviations are given in parentheses and refer to the preceding 
digit. 
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Some difference in Mo-Mo bond length may be expected based on the nature of 

the donor ligand. The cluster orbitals that are oriented toward the terminal ligands 

are somewhat antibonding with respect to the Mo-Mo bonds of the cluster. Increased 

donation of electron density to these orbitals may have a Mo-Mo bond lengthening 

effect. Unfortunately, there is simply not enough information available at this time 

to make substantiated claims regarding the effect of coordinated ligand on Mo-Mo 

bond lengths. 

Infrared Spectroscopy 

The purpose of infrared spectroscopy was to determine whether or not and to 

what extent the substitution of the terminal ligands took place. The soluble products 

of the substitutions described above were examined. The observed peaks are listed in 

Table XI. The starting materials MogSg'npy and MogSg.(6-x)PrNH2 gave 

characteristic spectra. The spectrum of the pyridine derivative shows peaks at 1601 

and 631 cm"^ confirming the presence of pyridine [64,74]. The peaks at 1566 and 860 

in the spectrum of MogSg.(6-x)PrNH2 confirm the presence of M-propylamine [85] 

and the absence of the strong bands for coordinated pyridine confirm the substitution 

is complete. 

For the ethyl sulfide substitution, a very low yield was achieved. Because of 

this, only a very weak mull could be prepared and therefore only very weak peaks 

were observed. In this case, it is difficult to state with certainty that the substitution 

did in fact take place. The few peaks observed do suggest however that it has. 

Strong peaks for coordinated pyridine at 1601 and 1443 cm'^ are absent while new 
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peaks at 1097 and 802 cm'^ are seen. These arise from the presence of coordinated 

ethyl sulfide [86]. 

The spectrum of the product of the reaction of the propylamine adduct with 

THT confirms that this is indeed material with the ligands completely replaced by 

THT. Distinct peaks at 1306,1269,1254,1130,1070,1035, 957, 879, and 808 cm'^ 

in the mid-IR region all correlate to peaks for coordinated THT reported in the 

literature as having medium to strong intensity [86]. A very weak peak at 1023 was 

observed in this sample as well. No explanation can be offered for this peak other 

than minor impurity. The far-IR spectrum is dominated by the very strong peak at 

388 cm"^ which is due to vibrations of the cluster. In all of the derivatives, the Mo-S 

vibration occurs as a strong peak at 383 to 393 cm"^. The absence of vibrations at 

346 and 300 cm~^ in the far-IR region confirms the absence of any chloride in the 

clusters [87]. 
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Table XI. Infrared absorption frequencies (cm'^), of some MogSg'SL compounds 

MogSg-npy MogS8-(6-x)PrNH2 MogSg-GTHT MogSg 68Et2^ 

Mid-Infrared: 
1601(m)^ 

1260(m)® 

1150(w,b) 

1066(mw) 
1036(mw) 
1020(vw,b) 

800(m,b) 
752(mw) 
692(m) 

Far-infrared: 
631(mw) 

393(m,vb) 

1566(w) 

1261(mw) 

1032(m,b) 

997(mw) 

860(mw) 
804(m,b) 
750(mw) 

384(8,b) 

1806(m8) 
1269(m) 
1254(m) 
1130(m) 

1070(ms) 
1035(\rw) 
1023(vw) 

957(m) 
879(ms) 

808(m) 

673(w) 
665(vw) 

515(m) 

466(w,b) 
388(vs) 
279(w) 
272(m) 

1261(ms) 

1097(s,b) 

802(8) 

476(m,b) 

383(m,b) 

®Due to very low yield, the mull was not very concentrated and therefore the 
intensities were not as strong as expected. 

^Relative intensities are given in parentheses: 8=8trong, m=medium, w=weak, 
b=broad. 

^hese bands are most likely due to the presence of silicone stopcock grease in 
the samples. 
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CONCLUSIONS 

It appears from the work here that the »-propylamine derivative of MogSg'BL 

is more reactive toward ligand replacement by sulfur donors than the pyridine 

derivative. This may be due to the absence of intercluster interactions in the 

n-propylamine derivative. Thioether derivatives are not as easily prepared as the 

well characterized triethylphosphine derivative. Only the tetrahydrothiophene 

derivative was isolated in practical yields. 

The crystal structure was solved for MogSg*6THT. The cluster has nearly 

ideal octahedral symmetry. The Mo-Mo bond lengths are slightly shorter than found 

in MogSg 6PBtg, but limited evidence is available to establish the reason for this. 
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GENERAL SUMMARY 

The reactivity of bridging ligands in Mog cluster containing compounds, 

specifically MogCl22» was exploited in this work to prepare mixed sulfide chloride 

clusters, MogCl^g_^)8g^. Because of the potential use of the molecular compounds as 

precursors to Chevrel phase compounds, the properties of the molecular compounds 

must be better understood. Steps were made toward such understanding. 

Because of previous problems in isolating pure compounds with mixed 

bridging ligands, purification of these mixtures was a goal of this research. The 

reaction of MogCl22 with sodium hydrosulfide in the presence of a stoichiometric 

amount of sodium butoxide produced a mixture of sulfided clusters. When the 

reaction stoichiometry was four equivalents of sodium hydrosulfide, a cluster product 

was produced which had an average composition of approximately 

[MogSg gCl^ g] 4py. After derivitization and chromatographic separation, 

compounds with the cluster compositions [MogSg], [MogS_gCl_g], and [MogS^Cl^] 

were isolated as the triethylphosphine derivatives, MogCl^g_^^8^ GPEtg, or the 

triethylphosphine oxide derivative as was the case when x = 4. 

Separations on a basic alumina column were achieved based on chlorine 

content of the compound. The interaction between aluminum and chlorine seems to 

be the retention mechanism because the cluster containing no chlorine did not adsorb 

to the column at all and subsequently eluted fractions contained increasingly more 

chlorine. 
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The substitution of ligands in the terminal positions of the MogSg 6L cluster 

was found to depend upon both the substituting ligand and the reactant cluster's 

leaving ligand. Tetrahydrothiophene (THT), was the most reactive of the three 

thioethers tried at replacing the ligands of MogSg-npy or MogSg (6-x)PrNH2. Also, 

n-propylamine ligands seemed more readily replaced than pyridine ligands. When 

the PrNH2 derivative was reacted with THT, crystalline material was obtained. 

Substitution of outer ligands in complexes of Mog has been studied to a great 

extent. In addition to the substitution chemistry discussed above, the removal of the 

terminal ligands was examined as a method of preparing the Chevrel phases at lower 

temperatures. The transfer of the ligands of MogSg GPEtg to other complexes was 

examined. Reaction of MogSg GPEtg with molybdenum hexacarbonyl or dicobalt 

octacarbonyl resulted in low yields of insoluble products. The insolubility and weak 

absorptions in the infrared spectra did suggest that the products were partially de-

ligated, that is, they had less than six triethylphosphine ligands remaining. 

When MogSg*6PEtg was reacted with copper(I) chloride in refluxing toluene, 

100% of the product was insoluble. Unfortunately, the product contained CuCl in 

some form. Some triethylphosphine also remained but it could not be determined 

whether it was bound to the copper or the cluster. 

Finally, chemical transformation of the ligand to the non-coordinating species 

triethylphosphine sulfide was attempted. In this reaction, approximately 20% of the 

product was insoluble. This product's infrared spectrum showed only weak peaks 

associated with coordinated triethylphosphine. Also, triethylphosphine sulfide was 

isolated from the soluble product and identified by its infrared spectra. These results 
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suggested that the reaction proceeded as predicted. However, the elemental analysis 

of the product indicated that it contained triethylphosphine sulfide in some form. 

Triethylphosphine sulfide was recovered by reacting this product with 

triethylphosphine, which supports the existence of triethylphosphine sulfide 

coordinated to the cluster. However, that is not supported by the infrared spectrum 

where no peak for the P=S stretch was observed, either as the free ligand or 

coordinated ligand. 
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FUTURE WORK 

Research in the area of compounds with hexanuclear molybdenum clusters has 

been going on for quite some time. The structures and properties of molybdenum(II) 

halides were studied in the 1960s. The discovery of superconducting Chevrel phases 

spurred a great deal of research on these compounds during the 1970s. Throughout 

the 1980s, new solid state compounds with the hexanuclear clusters were prepared 

and characterized. 

In this research, as well as previous work in this group, the sulfidation of 

molecular clusters was studied. Much progress was made toward the isolation of 

mixed chloride sulfide clusters. Many of the mixed ligand species can now be 

prepared and purified. Microcrystalline material has been prepared but further 

efforts to grow single crystals suitable for x-ray diffraction studies are needed to 

study the trends of the entire series, [MogCl^g_g)8^]. 

Further purification of the clusters MogCl^g_^^Sg'6PEtg, where 5 ^ x ^ 7, is 

needed before their structures can be solved with confidence. Structural data for 

these clusters will answer questions about the effect of oxidation state on Mo-Mo 

bond lengths. Also interesting will be the electronic properties of the clusters with 

5 ^ X ^ 7. The clusters with x = 5 and x = 7 will surely be paramagnetic. The x = 6 

species may or may not be paramagnetic and a Jahn-Teller distortion is predicted. 

The use of electron paramagnetic resonance spectroscopy has been very limited and 

more detailed studies need to be done. Cyclic voltammetry would further elucidate 
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the eletrochemical properties of mixed chloride sulfide species with 20 to 24 electrons 

per cluster. 

The de-ligation of MogSg GPEtg has not been shown here to proceed easily to 

the binary MogSg. The use of triethylphosphine ligand in the preparation of the 

molecular cluster was to assure complete ligation aiid solubility. Its strength as a 

coordinating ligand assured the desirable properties in studying the molecular 

species, but for the same reasons, prevented its removal to give a Chevrel phase 

material. Better choices for ligands might be aryl substituted phosphines which tend 

to be weaker coordinators, or amines. There is evidence that n-propylamine is 

removed from the cluster, at least to give a MogSg 4PrNH2 species, under vacuum at 

room temperature [15]. The lability of this ligand may make MogSg (6-x)PrNH2 a 

more feasible candidate as a precursor to MogSg. An appropriate precursor must be 

soluble and its ligands must be fairly labile. Further study on the substitution of 

ligands of the MogSg'6L cluster compounds is required before further work on de-

ligation is continued. 

Further, it may be useful to undertake a study of a controlled de-ligation. 

That is, try to remove only one or two ligands per cluster at a time. If compounds 

with four or five ligands can be characterized, the information may be useful in 

developing methods for the complete de-ligation. Also, such partially ligated species 

may themselves have interesting structures and provide insight into the nature of 

the intercluster bonding found in the Chevrel phases. 

Some substitution reactions were done in this work toward the goal of 

preparing thioether derivatives. Additional substitutions have been studied [15]. It 
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seems that propylamine easily replaces pyridine and disrupts the intercluster 

linkages formed during the preparation of the sulfided cluster. Further, the 

propylamine ligand is quite labile and is removed under vacuum at room 

temperature. It was found here that the propylamine cluster derivative was more 

reactive toward substitution by thioether ligands than the pyridine derivative. 

Continued investigations may provide useful information about which derivatives 

may best be used as precursors to Chevrel phase compounds. 
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Table XII. Anisotropic temperature factors (Â^, xlO^), for the heavy atoms of 
MogSg-eTHT 

Atom Ujfj U22 U53 Uj2 Ujg U23 

Mo 37 (2) 39 (2) 39 (2) 3(2) 6(1) 1(2) 
8(1) 48(5) 57 (6) 33 (4) -9(4) -4(4) 1(4) 
8(2) 46(4) 46 (4) 46 (4) 2(4) 2(4) 2(4) 
8(3) 85(7) 54(7) 55 (6) -15 (5) -25(5) 2(4) 

Table XIII. Calculated fractional atomic coordinates (x 10^), for the hydrogen atoms 
ofMogSg-GTHT 

Atom X y z U 

Hla 4557.3 5792.3 2145.9 50.7 

Hlb 5077.0 5967.6 2839.8 50.7 

H2a 4383.5 6779.7 2029.8 50.7 

H2b 4896.7 6954.4 2728.6 50.7 

H3a 3596.2 7072.3 2526.3, 50.7 

H3b 4112.3 7267.8 3217.5 50.7 

H4a 3069.1 6355.5 3131.8 50.7 

H4b 3600.9 6533.1 3815.8 50.7 
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Table XIV. Non-essential bond distances (Â), and angles (deg), in MogSg'BTHT 

Distances Angles 

S(3)-C(l) 1.75(5) C(l)-S(3)-C(4) 91.(3) 

S(3).C(4) 1.77(5) S(3)-C(l)-C(2) 115.(4) 

C(l)-C(2) 1.34(8) C(l)-C(2)-C(3) 111.(5) 

C(2).C(3) 1.26(9) C(2)-C(3)-C(4) 120.(5) 

C(3)-C(4) 1.52 (8) C(3)-C(4).S(3) 102. (4) 
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Table XV. Structure factor table for MogSg*6THT. The H index will serve as 
column headings. Its maximum value is 20 and its minimum value is 0. 
Number of pieces of data = 227. Multiplicative scale factor for Fo & Fc = 
1.000. The Fc will be signed 

H = 2 
K L Fo Fc 
0 0 946 875 
1 1 60 -50 
2 0 535 537 
2 2 390 383 
4 0 135 122 
5 1 96 77 
7 1 103 74 
8 0 139-148 
18 0 187-187 
20 0 129-136 

H = 3 
K L Fo Fc 
2 1 176 176 
3 2 191-184 
7 2 132 138 
9 2 266 258 
10 1 91 -76 
11 2 129 143 
14 1 120 97 
16 1 135 125 
18 1 165 153 
20 1 113 71 

H = 4 
K L Fo Fc 
1 1 160-156 
2 0 200 197 
3 3 131-131 
4 2 140-140 
4 4 248 -243 
5 1 106 97 
8 0 112 117 
9 3 149-155 

10 0 103 106 
12 2 111 106 
14 2 123 125 
15 3 127 119 

17 3 123 116 
18 0 144-139 
18 2 120-109 
20 0 120-109 
20 2 115-100 

H = 5 
K L Fo Fc 
2 1 95 82 
5 2 155-162 
5 4 106-120 
6 3 148-148 
7 4 91 -77 
8 3 177-180 
9 2 90 53 
10 3 127-119 
11 2 104 110 
12 1 189 190 
13 2 115 92 
14 1 191 195 
14 3 117 98 
16 1 175 174 
16 3 119 109 
18 1 128 116 

H = 6 
K L Fo Fc 
0 0 190-203 
1 1 107 89 
2 0 278-262 
2 2 103 -84 
3 3 214-220 
4 0 323-323 
4 2 187-199 
5 3 204-216 
5 5 276-274 
6 2 107-116 
7 1 91 -90 
7 3 179-174 
7 5 235-243 

8 0 205 204 
9 5 104-100 

10 0 104 105 
10 2 105 90 
10 4 137 135 
11 3 133 138 
12 0 106 111 
12 2 157 153 
12 4 169 173 
13 1 104 77 
13 3 136 131 
14 0 172 169 
14 2 179 173 
14 4 115 113 
15 1 115 96 
15 3 134 125 
16 2 112 97 

H = 7 
K L Fo Fc 
2 1 185 183 
4 1 297 314 
4 3 164 173 
5 2 172-179 
5.4 208 -219 
6 1 282 294 
6 3 97 92 
6 5 187-199 
7 4 127 -127 
7 6 160-164 
8 1 110 107 
8 5 118-119 
9 4 105 -92 
10 3 113 -109 
12 1 115 98 
14 1 144 141 
16 1 137 125 

H = 8 
K L 1 Fo Fc 
0 0 337 -328 
2 0 175 -181 
2 2 103 -114 
3 3 244-235 
4 0 207 -211 
4 2 110 -131 
5 1 120 -112 
5 3 325 -317 
5 5 263 -268 
6 0 116 120 
7 1 107 111 
7 3 138 -145 
7 5 149 •154 
7 7 114 116 

10 0 101 -88 
10 4 108 105 
11 3 165 170 
11 5 154 155 
11 7 116 109 
13 1 116 107 
13 3 200 205 
13 5 184 190 
13 7 137 137 
14 0 185 191 
14 2 151 144 
15 3 139 137 
15 5 132 130 
16 0 116 113 
19 7 108 -75 

H = 9 
K L Fo Fc 
2 1 401 399 
4 1 563 554 
4 3 396 390 
5 4 214-211 
6 1 290 302 
6 3 275 287 
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Table XV (continued). 

6 5 94 75 
7 4 112 -109 
7 6 114 -94 

11 4 109 -68 
12 7 126-114 
14 7 137-141 

H = 10 
K L Fo Fc 
0 0 153 -152 
2 0 175-175 
2 2 112-108 
3 3 107-106 
4 0 197-198 
4 2 104-105 
4 4 95 110 
5 3 216 -226 
5 5 146-151 
6 0 175-192 
6 4 132 141 
7 3 115-128 

11 3 112 90 
11 5 152 148 
11 7 159 161 
11 9 129 128 
13 3 191 196 
13 5 231 226 
13 7 146 146 
15 3 125 121 
15 5 136 148 

H = 11 
K L Fo Fc 
2 1 198 191 
4 1 356 350 
4 3 171 176 
5 2 108-100 
5 4 132-138 
6 1 202 207 
6 3 135 142 
7 4 117-127 

10 9 115 102 
1110 115 101 

H = 12 
K L Fo Fc 
2 0 114 -99 
4 0 104 -97 
4 4 144 143 
5 3 179-183 
5 5 115-114 
6 4 121 115 
6 6 115 116 
7 3 109-103 

11 5 114 97 
12 4 120-102 
12 6 115 -97 
1212 125 125 
13 5 126 130 
14 6 118-112 
16 6 108 -92 

H = 13 
K L Fo Fc 
8 1 116-116 

10 1 118-103 
10 9 112 102 
11 4 123-108 
13 2 124-117 
13 4 123 -129 

H= 14 
K L Fo Fc 
4 4 111 90 
6 0 114 85 

10 0 115-107 
10 2 117-122 
10 4 123 -113 
11 3 116-107 
12 0 109-111 
12 2 116-121 
12 4 129-133 

H =15 
K L Fo Fc 
6 1 137-145 
7 2 117 -115 
8 1 183-186 
8 3 121 -125 
10 1 145-152 
11 4 127-131 

11=16 
K L Fo Fc 
3 3 120 99 
6 0 126 106 

12 2 111 -73 

H = 17 
K L Fo Fc 
4 1 124-111 
6 1 118-100 
8 1 131-123 
9 2 117 -76 
9 4 122 -96 
10 1 141-134 

H = 18 
K L Fo Fc 
0 0 176-177 
1 1 120 98 
2 0 142-148 
2 2 153-149 
6 0 154 156 
8 0 138 141 
8 2 122 110 

H = 20 
K L Fo Fc 
0 0 123-100 
2 2 109 -93 
6 0 118 99 
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